956 resultados para ORGANIZATION OF SCIENCE
Resumo:
The adjustment of X-linked gene expression to the X chromosome copy number (dosage compensation [DC]) has been widely studied as a model of chromosome-wide gene regulation. In Caenorhabditis elegans, DC is achieved by twofold down-regulation of gene expression from both Xs in hermaphrodites. We show that in males, the single X chromosome interacts with nuclear pore proteins, while in hermaphrodites, the DC complex (DCC) impairs this interaction and alters X localization. Our results put forward a structural model of DC in which X-specific sequences locate the X chromosome in transcriptionally active domains in males, while the DCC prevents this in hermaphrodites.
Resumo:
DNA-grafted supramolecular polymers (SPs) allow the programmed organization of DNA in a highly regular, one-dimensional array. Oligonucleotides are arranged along the edges of pyrene-based helical polymers. Addition of complementary oligonucleotides triggers the assembly of individual nanoribbons resulting in the development of extended supramolecular networks. Network formation is enabled by cooperative coaxial stacking interactions of terminal GC base pairs. The process is accompanied by structural changes in the pyrene polymer core that can be followed spectroscopically. Network formation is reversible, and disassembly into individual ribbons is realized either via thermal denaturation or by addition of a DNA separator strand.
Resumo:
Sequential insertion of different dyes into the 1D channels of zeolite L (ZL) leads to supramolecular sandwich structures and allows the formation of sophisticated antenna composites for light harvesting, transport, and trapping. The synthesis and properties of dye molecules, host materials, composites, and composites embedded in polymer matrices, including two- and three-color antenna systems, are described. Perylene diimide (PDI) dyes are an important class of chromophores and are of great interest for the synthesis of artificial antenna systems. They are especially well suited to advancing our understanding of the structure–transport relationship in ZL because their core fits tightly through the 12-ring channel opening. The substituents at both ends of the PDIs can be varied to a large extent without influencing their electronic absorption and fluorescence spectra. The intercalation/insertion of 17 PDIs, 2 terrylenes, and 1 quaterrylene into ZL are compared and their interactions with the inner surface of the ZL nanochannels discussed. ZL crystals of about 500 nm in size have been used because they meet the criteria that must be respected for the preparation of antenna composites for light harvesting, transport, and trapping. The photostability of dyes is considerably improved by inserting them into the ZL channels because the guests are protected by being confined. Plugging the channel entrances, so that the guests cannot escape into the environment is a prerequisite for achieving long-term stability of composites embedded in an organic matrix. Successful methods to achieve this goal are described. Finally, the embedding of dye–ZL composites in polymer matrices, while maintaining optical transparency, is reported. These results facilitate the rational design of advanced dye–zeolite composite materials and provide powerful tools for further developing and understanding artificial antenna systems, which are among the most fascinating subjects of current photochemistry and photophysics.
Resumo:
Repetitive transcranial magnetic stimulation (rTMS) applied over the right posterior parietal cortex (PPC) in healthy participants has been shown to trigger a significant rightward shift in the spatial allocation of visual attention, temporarily mimicking spatial deficits observed in neglect. In contrast, rTMS applied over the left PPC triggers a weaker or null attentional shift. However, large interindividual differences in responses to rTMS have been reported. Studies measuring changes in brain activation suggest that the effects of rTMS may depend on both interhemispheric and intrahemispheric interactions between cortical loci controlling visual attention. Here, we investigated whether variability in the structural organization of human white matter pathways subserving visual attention, as assessed by diffusion magnetic resonance imaging and tractography, could explain interindividual differences in the effects of rTMS. Most participants showed a rightward shift in the allocation of spatial attention after rTMS over the right intraparietal sulcus (IPS), but the size of this effect varied largely across participants. Conversely, rTMS over the left IPS resulted in strikingly opposed individual responses, with some participants responding with rightward and some with leftward attentional shifts. We demonstrate that microstructural and macrostructural variability within the corpus callosum, consistent with differential effects on cross-hemispheric interactions, predicts both the extent and the direction of the response to rTMS. Together, our findings suggest that the corpus callosum may have a dual inhibitory and excitatory function in maintaining the interhemispheric dynamics that underlie the allocation of spatial attention. SIGNIFICANCE STATEMENT: The posterior parietal cortex (PPC) controls allocation of attention across left versus right visual fields. Damage to this area results in neglect, characterized by a lack of spatial awareness of the side of space contralateral to the brain injury. Transcranial magnetic stimulation over the PPC is used to study cognitive mechanisms of spatial attention and to examine the potential of this technique to treat neglect. However, large individual differences in behavioral responses to stimulation have been reported. We demonstrate that the variability in the structural organization of the corpus callosum accounts for these differences. Our findings suggest novel dual mechanism of the corpus callosum function in spatial attention and have broader implications for the use of stimulation in neglect rehabilitation.
Resumo:
The histones which pack new DNA during the S phase of animal cells are made from mRNAs that are cleaved at their 3' end but not polyadenylated. Some of the factors used in this reaction are unique to it while others are shared with the polyadenylation process that generates all other mRNAs. Recent work has begun to shed light on how the cell manages the assignment of these common components to the two 3' processing systems, and how it achieves their cell cycle-regulation and recruitment to the histone pre-mRNA. Moreover, recent and older findings reveal multiple connections between the nuclear organization of histone genes, their transcription and 3' end processing as well as the control of cell proliferation.
Resumo:
PURPOSE As survival rates of adolescent and young adult (AYA) cancer patients increase, a growing number of AYA cancer survivors need follow-up care. However, there is little research on their preferences for follow-up care. We aimed to (1) describe AYA cancer survivors' preferences for the organization and content of follow-up care, (2) describe their preferences for different models of follow-up, and (3) investigate clinical and sociodemographic characteristics associated with preferences for the different models. METHODS AYA cancer survivors (diagnosed with cancer at age 16-25 years; ≥5 years after diagnosis) were identified through the Cancer Registry Zurich and Zug. Survivors completed a questionnaire on follow-up attendance, preferences for organizational aspects of follow-up care (what is important during follow-up, what should be included during appointments, what specialists should be involved, location), models of follow-up (telephone/questionnaire, general practitioner (GP), pediatric oncologist, medical oncologist, multidisciplinary team), and sociodemographic characteristics. Information on tumor and treatment was available through the Cancer Registry Zurich and Zug. RESULTS Of 389 contacted survivors, 160 (41.1 %) participated and 92 (57.5 %) reported still attending follow-up. Medical aspects of follow-up care were more important than general aspects (p < 0.001). Among different organizational models, follow-up by a medical oncologist was rated higher than all other models (p = 0.002). Non-attenders of follow-up rated GP-led follow-up significantly higher than attenders (p = 0.001). CONCLUSION Swiss AYA cancer survivors valued medical content of follow-up and showed a preference for medical oncologist-led follow-up. Implementation of different models of follow-up care might improve accessibility and attendance among AYA cancer survivors.
Resumo:
Previous restriction analysis of cloned equine DNA and genomic DNA of equine peripheral blood mononuclear cells had indicated the existence of one c epsilon, one c alpha and up to six c gamma genes in the haploid equine genome. The c epsilon and c alpha genes have been aligned on a 30 kb DNA fragment in the order 5' c epsilon-c alpha 3'. Here we describe the alignment of the equine c mu and c gamma genes by deletion analysis of one IgM, four IgG and two equine light chain expressing heterohybridomas. This analysis establishes the existence of six c gamma genes per haploid genome. The genomic alignment of the cH-genes is 5' c mu/(/) c gamma 1/(/) c gamma 2/(/) c gamma 3/(/) c gamma 4/(/) c gamma 5/(/) c gamma 6/(/) c epsilon-c alpha 3', naming the c gamma genes according to their position relative to c mu. For three of the c gamma genes the corresponding IgG isotypes could be identified as IgGa for c gamma 1, IgG(T) for c gamma 3 and IgGb for c gamma 4.
Resumo:
Nitrate reductase in Escherichia coli is a membrane-bound anaerobic enzyme that is repressed by oxygen and induced by nitrate. The genetic organization of the structural genes for the two larger subunits of nitrate reductase ((alpha) and (beta)) was determined by immunoprecipitation analysis of the formation of these proteins in nitrate reductase-deficient mutants resulting from transposon Tn5 mutagenesis. The results suggested that the genes encoding the (alpha) and (beta) subunits (narG and H) were arranged in an operon with transcription in the direction promoter(--->)(alpha)(--->)(beta). Segments of the chromosome containing the Tn5 inserts from several of the mutants were cloned into plasmid pBR322 and the positions of the transposons determined by restriction mapping. The Tn5 insertion sites were localized on two contiguous EcoRI fragments spanning about 6.6 kilobases of DNA. The narI gene (proposed to encode the (gamma) subunit) was positioned immediately downstream from the (beta)-gene (narH) by Southern analysis of Tn10 insertions into the narI locus. A Tn10 insertion into the narK locus, proposed to encode a nitrate-sensitive repressor of other anaerobic enzymes, was located about 1.5 kilobases upstream from the narGHI operon promoter. The narL locus, proposed to encode a nitrate-sensitive positive regulator of the narGHI operon and known to be genetically linked to the other nar genes, was demonstrated to lie outside a 19.3-kilobase region of the chromosome which encompasses the other nar genes. The physical limit of the narGHI promoter was defined by studying the effect of Tn5 insertions into a hybrid plasmid containing the functional operon. The points of origin of the coding regions for the (alpha) and (beta) genes were deduced by alignment of the chromosomal map of Tn5 insertion sites with the sizes of (alpha) and (beta) subunit fragments produced by plasmids carrying these Tn5 inserts in the nar operon. The coding region for the (alpha) subunit (143,000 daltons) begins about 250 nucleotides downstream from the deduced limit of the promoter region and includes about 4.0 kilobases of DNA; the region encoding (beta) (60,000 daltons) lies immediately downstream from the (alpha)-gene and is approximately 1.6 kilobases in length. The adjacent region encoding the (gamma) subunit (19,000 daltons) is approximately 0.5 kilobase in length. ^
THE ULTRASTRUCTURAL ORGANIZATION OF THE HYPOGLOSSAL NUCLEUS IN THE RAT (SYNAPTOLOGY, CRANIAL NERVES)
Resumo:
An ultrastructural study of the hypoglossal nucleus (XII) in the rat has revealed two distinct neuronal populations. Hypoglossal motoneurons comprised the largest population of neurons in XII and were identified following injection of horseradish peroxidase (HRP) into the tongue. Motoneurons were large (25-50(mu)m), multipolar in shape and distributed throughout XII. The nucleus was large, round and centrally located, and the cytoplasm was characterized by dense lamellar arrays of rough endoplasmic reticulum. In contrast, a second population of small (10-18(mu)m), round to oval shaped neurons was found restricted to the ventral and dorsolateral regions of XII. The nucleus was markedly invaginated and eccentric, the cytoplasm scant and filled with free ribosomes, and the absence of lamellar arrays of rough endoplasmic reticulum was conspicuous. Neurons of this type were never found to contain HRP reaction product. These results demonstrate that the hypoglossal nucleus does not consist solely of motoneurons, but includes a distinctly separate, presumably non-motoneuronal pool. Arguments are presented in favor of this second neuron population being interneurons. The functional significance of these findings in relation to tongue control is discussed. ^
Resumo:
In a marvelous but somewhat neglected paper, 'The Corporation: Will It Be Managed by Machines?' Herbert Simon articulated from the perspective of 1960 his vision of what we now call the New Economy the machine-aided system of production and management of the late twentieth century. Simon's analysis sprang from what I term the principle of cognitive comparative advantage: one has to understand the quite different cognitive structures of humans and machines (including computers) in order to explain and predict the tasks to which each will be most suited. Perhaps unlike Simon's better-known predictions about progress in artificial intelligence research, the predictions of this 1960 article hold up remarkably well and continue to offer important insights. In what follows I attempt to tell a coherent story about the evolution of machines and the division of labor between humans and machines. Although inspired by Simon's 1960 paper, I weave many other strands into the tapestry, from classical discussions of the division of labor to present-day evolutionary psychology. The basic conclusion is that, with growth in the extent of the market, we should see humans 'crowded into' tasks that call for the kinds of cognition for which humans have been equipped by biological evolution. These human cognitive abilities range from the exercise of judgment in situations of ambiguity and surprise to more mundane abilities in spatio-temporal perception and locomotion. Conversely, we should see machines 'crowded into' tasks with a well-defined structure. This conclusion is not based (merely) on a claim that machines, including computers, are specialized idiots-savants today because of the limits (whether temporary or permanent) of artificial intelligence; rather, it rests on a claim that, for what are broadly 'economic' reasons, it will continue to make economic sense to create machines that are idiots-savants.
Resumo:
The first professional base ball clubs came in two varieties: stock clubs, which paid their players fixed wages, and player cooperatives, in which players shared the proceeds after expenses. We argue that stock clubs were formed with players of known ability, while co-ops were formed with players of unknown ability. Although residual claimancy served to screen out players of inferior ability in co-ops, the process was imperfect due to the team production problem. Based on this argument, we suggest that co-ops functioned as an early minor league system where untried players could seek to prove themselves and eventually move up to wage teams. Empirical analysis of data on player performance and experience in early professional base ball provides support for the theory.
Resumo:
No abstract available.
Resumo:
This study examined the effectiveness of discovery learning and direct instruction in a diverse second grade classroom. An assessment test and transfer task were given to students to examine which method of instruction enabled the students to grasp the content of a science lesson to a greater extent. Results demonstrated that students in the direct instruction group scored higher on the assessment test and completed the transfer task at a faster pace; however, this was not statistically significant. Results also suggest that a mixture of instructional styles would serve to effectively disseminate information, as well as motivate students to learn.
Resumo:
Under the Clean Air Act, Congress granted discretionary decision making authority to the Administrator of the Environmental Protection Agency (EPA). This discretionary authority involves setting standards to protect the public's health with an "adequate margin of safety" based on current scientific knowledge. The Administrator of the EPA is usually not a scientist, and for the National Ambient Air Quality Standard (NAAQS) for particulate matter (PM), the Administrator faced the task of revising a standard when several scientific factors were ambiguous. These factors included: (1) no identifiable threshold below which health effects are not manifested, (2) no biological basis to explain the reported associations between particulate matter and adverse health effects, and (3) no consensus among the members of the Clean Air Scientific Advisory Committee (CASAC) as to what an appropriate PM indicator, averaging period, or value would be for the revised standard. ^ This project recommends and demonstrates a tool, integrated assessment (IA), to aid the Administrator in making a public health policy decision in the face of ambiguous scientific factors. IA is an interdisciplinary approach to decision making that has been used to deal with complex issues involving many uncertainties, particularly climate change analyses. Two IA approaches are presented; a rough set analysis by which the expertise of CASAC members can be better utilized, and a flag model for incorporating the views of stakeholders into the standard setting process. ^ The rough set analysis can describe minimal and maximal conditions about the current science pertaining to PM and health effects. Similarly, a flag model can evaluate agreement or lack of agreement by various stakeholder groups to the proposed standard in the PM review process. ^ The use of these IA tools will enable the Administrator to (1) complete the NAAQS review in a manner that is in closer compliance with the Clean Air Act, (2) expand the input from CASAC, (3) take into consideration the views of the stakeholders, and (4) retain discretionary decision making authority. ^
Organization of the inferotemporal cortex in the macaque monkey: Connections of areas PITv and CITvp
Resumo:
Visual cortex of macaque monkeys consists of a large number of cortical areas that span the occipital, parietal, temporal, and frontal lobes and occupy more than half of cortical surface. Although considerable progress has been made in understanding the contributions of many occipital areas to visual perceptual processing, much less is known concerning the specific functional contributions of higher areas in the temporal and frontal lobes. Previous behavioral and electrophysiological investigations have demonstrated that the inferotemporal cortex (IT) is essential to the animal's ability to recognize and remember visual objects. While it is generally recognized that IT consists of a number of anatomically and functionally distinct visual-processing areas, there remains considerable controversy concerning the precise number, size, and location of these areas. Therefore, the precise delineation of the cortical subdivisions of inferotemporal cortex is critical for any significant progress in the understanding of the specific contributions of inferotemporal areas to visual processing. In this study, anterograde and/or retrograde neuroanatomical tracers were injected into two visual areas in the ventral posterior and central portions of IT (areas PITv and CITvp) to elucidate the corticocortical connections of these areas with well known areas of occipital cortex and with less well understood regions of inferotemporal cortex. The locations of injection sites and the delineation of the borders of many occipital areas were aided by the pattern of interhemispheric connections, revealed following callosal transection and subsequent labeling with HRP. The resultant patterns of connections were represented on two-dimensional computational (CARET) and manual cortical maps and the laminar characteristics and density of the projection fields were quantified. The laminar and density features of these corticocortical connections demonstrate thirteen anatomically distinct subdivisions or areas distributed within the superior temporal sulcus and across the inferotemporal gyrus. These results serve to refine previous descriptions of inferotemporal areas, validate recently identified areas, and provide a new description of the hierarchical relationships among occipitotemporal cortical areas in macaques. ^