924 resultados para OAIS reference model for an open archival information system
Resumo:
At the present time there is a high pressure toward the improvement of all the production processes. Those improvements can be sensed in several directions in particular those that involve energy efficiency. The definition of tight energy efficiency improvement policies is transversal to several operational areas ranging from industry to public services. As can be expected, agricultural processes are not immune to this tendency. This statement takes more severe contours when dealing with indoor productions where it is required to artificially control the climate inside the building or a partial growing zone. Regarding the latter, this paper presents an innovative system that improves energy efficiency of a trees growing platform. This new system requires the control of both a water pump and a gas heating system based on information provided by an array of sensors. In order to do this, a multi-input, multi-output regulator was implemented by means of a Fuzzy logic control strategy. Presented results show that it is possible to simultaneously keep track of the desired growing temperature set-point while maintaining actuators stress within an acceptable range.
Resumo:
The inability to invest in and develop mortality information systems has been considered the single most critical failure in health information systems. Health information systems are an integral part of health systems. This includes strengthening not only the information content but also the information systems themselves, health information platforms and infrastructure. In this article, particular focus has been placed on the regional and inter-sectoral approach to implementation adopted in Portugal. The article shows how legal and operational barriers have been overcome and focuses on the potential of the new system to improve the quality and timeliness of mortality statistics.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations Research and Development, McLean, Va.
Resumo:
The road to electric rope shovel automation is marked with technological innovations that include an increase in operational information available to mining operations. The CRCMining Shovel Operator Information System not only collects machine operational data but also provides the operator with knowledge-of-performance and influences his/her performance to achieve higher productivity with reduced machine duty. The operator’s behaviour is one of the most important aspects of the man-machine interaction to be considered before semi- or fully-automated shovel systems can be realised. This paper presents the results of the rope shovel studies conducted by CRCMining between 2002 and 2004, provides information on current research to improve shovel performance and briefly discusses the implications of human-system interactions on future designs of autonomous machines.
Resumo:
The development of an information system in Caribbean public sector organisations is usually seen as a matter of installing hardware and software according to a directive from senior management, without much planning. This causes huge investment in procuring hardware and software without improving overall system performance. Increasingly, Caribbean organisations are looking for assurances on information system performance before making investment decisions not only to satisfy the funding agencies, but also to be competitive in this dynamic and global business world. This study demonstrates an information system planning approach using a process-reengineering framework. Firstly, the stakeholders for the business functions are identified along with their relationships and requirements. Secondly, process reengineering is carried out to develop the system requirements. Accordingly, information technology is selected through detailed system requirement analysis. Thirdly, cost-benefit analysis, identification of critical success factors and risk analysis are carried out to strengthen the selection. The entire methodology has been demonstrated through an information system project in the Barbados drug service, a public sector organisation in the Caribbean.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT One of the current research trends in Enterprise Resource Planning (ERP) involves examining the critical factors for its successful implementation. However, such research is limited to system implementation, not focusing on the flexibility of ERP to respond to changes in business. Therefore, this study explores a combination system, made up of an ERP and informality, intended to provide organisations with efficient and flexible performance simultaneously. In addition, this research analyses the benefits and challenges of using the system. The research was based on socio-technical system (STS) theory which contains two dimensions: 1) a technical dimension which evaluates the performance of the system; and 2) a social dimension which examines the impact of the system on an organisation. A mixed method approach has been followed in this research. The qualitative part aims to understand the constraints of using a single ERP system, and to define a new system corresponding to these problems. To achieve this goal, four Chinese companies operating in different industries were studied, all of which faced challenges in using an ERP system due to complexity and uncertainty in their business environments. The quantitative part contains a discrete-event simulation study that is intended to examine the impact of operational performance when a company implements the hybrid system in a real-life situation. Moreover, this research conducts a further qualitative case study, the better to understand the influence of the system in an organisation. The empirical aspect of the study reveals that an ERP with pre-determined business activities cannot react promptly to unanticipated changes in a business. Incorporating informality into an ERP can react to different situations by using different procedures that are based on the practical knowledge of frontline employees. Furthermore, the simulation study shows that the combination system can achieve a balance between efficiency and flexibility. Unlike existing research, which emphasises a continuous improvement in the IT functions of an enterprise system, this research contributes to providing a definition of a new system in theory, which has mixed performance and contains both the formal practices embedded in an ERP and informal activities based on human knowledge. It supports both cost-efficiency in executing business transactions and flexibility in coping with business uncertainty.This research also indicates risks of using the system, such as using an ERP with limited functions; a high cost for performing informally; and a low system acceptance, owing to a shift in organisational culture. With respect to practical contribution, this research suggests that companies can choose the most suitable enterprise system approach in accordance with their operational strategies. The combination system can be implemented in a company that needs to operate a medium amount of volume and variety. By contrast, the traditional ERP system is better suited in a company that operates a high-level volume market, while an informal system is more suitable for a firm with a requirement for a high level of variety.
Resumo:
The polyparametric intelligence information system for diagnostics human functional state in medicine and public health is developed. The essence of the system consists in polyparametric describing of human functional state with the unified set of physiological parameters and using the polyparametric cognitive model developed as the tool for a system analysis of multitude data and diagnostics of a human functional state. The model is developed on the basis of general principles geometry and symmetry by algorithms of artificial intelligence systems. The architecture of the system is represented. The model allows analyzing traditional signs - absolute values of electrophysiological parameters and new signs generated by the model – relationships of ones. The classification of physiological multidimensional data is made with a transformer of the model. The results are presented to a physician in a form of visual graph – a pattern individual functional state. This graph allows performing clinical syndrome analysis. A level of human functional state is defined in the case of the developed standard (“ideal”) functional state. The complete formalization of results makes it possible to accumulate physiological data and to analyze them by mathematics methods.
Resumo:
This paper presents an effective decision making system for leak detection based on multiple generalized linear models and clustering techniques. The training data for the proposed decision system is obtained by setting up an experimental pipeline fully operational distribution system. The system is also equipped with data logging for three variables; namely, inlet pressure, outlet pressure, and outlet flow. The experimental setup is designed such that multi-operational conditions of the distribution system, including multi pressure and multi flow can be obtained. We then statistically tested and showed that pressure and flow variables can be used as signature of leak under the designed multi-operational conditions. It is then shown that the detection of leakages based on the training and testing of the proposed multi model decision system with pre data clustering, under multi operational conditions produces better recognition rates in comparison to the training based on the single model approach. This decision system is then equipped with the estimation of confidence limits and a method is proposed for using these confidence limits for obtaining more robust leakage recognition results.
Resumo:
A tanulmány Magyarország egyik legnagyobb foglalkoztatójának megrendelésére készült abból a célból, hogy milyen megoldásokkal lehetne a vállalati működést hatékonyabbá tenni. Ennek keretében a szerzők megvizsgálták, hol tart ma a HR adatbányászati kutatás a világban. Milyen eszközök állnak rendelkezésre ahhoz, hogy a munkavállalói elmenetelt előre jelezzék, illetve figyeljék, valamint milyen lehetőség van a hálózati kutatások felhasználására a biztonság területén. Szerencsés, hogy a vállalkozói kérdések és erőforrások találkozhattak a kutatói szféra aktuális kutatási területeivel. A tanulmány szerzői úgy gondolják, hogy a cikkben megfogalmazott állítások, következtetések, eredmények a jövőben hasznosíthatók lesznek a vállalat és más cégek számára is. _____ The authors were pleased to take part in this research project initiated by one of Hungary’s largest employer. The goal of the project was to work out BI solutions to improve upon their business process. In the framework of the project first the authors made a survey on the current trends in the world of HR datamining. They reviewed the available tools for the prediction of employee promotion and investigated the question on how to utilize results achieved in social network analysis in the field of enterprise security. When real business problems and resources meet the mainstream research of the scientific community it is always a fortunate and it is rather fruitful. The authors are certain that the results published in this document will be beneficial for Foxconn in the near future. Of course, they are not done. There are continually new research perspectives opening up and huge amount of information is accumulating in the enterprises just waiting for getting discovered and analysed. Also the environment in which an enterprise operates is dynamically changing and thus the company faces new challenges and new type of business problems arise. The authors are in the hope that their research experience will help decision makers also in the future to solve real world business problems.
Resumo:
The Accounting Information System (AIS) is an important course in the Department of Accounting (DoAc) of universities in Taiwan. This course is required for seniors not only because it meets the needs of the profession, but also because it provides continual study for the department's students.^ The scores of The National College and University Joint Entrance Examination (NUEE) show that students with high learning ability are admitted to public universities with high scores, while those with low learning ability are admitted only to private universities. The same situation has been found by the researcher while teaching an AIS course in DoAc of The Public Chun Shin University (CSU) and The Private Chinese Culture University (CCU).^ The purpose of this study was to determine whether low ability students enrolled in private universities in Taiwan in a mastery learning program could attain the same level as high ability students from public universities enrolled in a traditional program. An experimental design was used. The mastery learning method was used to teach three groups of seniors with low learning ability studying in the DoAc at CCU. The traditional method was used to teach the control group which consisted of senior students of DoAc of CSU with high learning ability. As a part of the mastery learning strategy, a formative test, quizzes, and homework were completed by the experimental group only, while the mid-term examination was completed by both groups as part of the course. The dependent variable was the summative test, the final examination. It was completed by both groups upon the course's completion.^ As predicted, there were significant differences between the two groups' results on the pretest. There were no significant differences between the two groups' results on the posttest. These findings support the hypothesis of the study and reveal the effectiveness of mastery learning strategies with low learning ability students. ^
Resumo:
Land use and transportation interaction has been a research topic for several decades. There have been efforts to identify impacts of transportation on land use from several different perspectives. One focus has been the role of transportation improvements in encouraging new land developments or relocation of activities due to improved accessibility. The impacts studied have included property values and increased development. Another focus has been on the changes in travel behavior due to better mobility and accessibility. Most studies to date have been conducted in metropolitan level, thus unable to account for interactions spatially and temporally at smaller geographic scales. ^ In this study, a framework for studying the temporal interactions between transportation and land use was proposed and applied to three selected corridor areas in Miami-Dade County, Florida. The framework consists of two parts: one is developing of temporal data and the other is applying time series analysis to this temporal data to identify their dynamic interactions. Temporal GIS databases were constructed and used to compile building permit data and transportation improvement projects. Two types of time series analysis approaches were utilized: univariate models and multivariate models. Time series analysis is designed to describe the dynamic consequences of time series by developing models and forecasting the future of the system based on historical trends. Model estimation results from the selected corridors were then compared. ^ It was found that the time series models predicted residential development better than commercial development. It was also found that results from three study corridors varied in terms of the magnitude of impacts, length of lags, significance of the variables, and the model structure. Long-run effect or cumulated impact of transportation improvement on land developments was also measured with time series techniques. The study offered evidence that congestion negatively impacted development and transportation investments encouraged land development. ^
Resumo:
Annual average daily traffic (AADT) is important information for many transportation planning, design, operation, and maintenance activities, as well as for the allocation of highway funds. Many studies have attempted AADT estimation using factor approach, regression analysis, time series, and artificial neural networks. However, these methods are unable to account for spatially variable influence of independent variables on the dependent variable even though it is well known that to many transportation problems, including AADT estimation, spatial context is important. ^ In this study, applications of geographically weighted regression (GWR) methods to estimating AADT were investigated. The GWR based methods considered the influence of correlations among the variables over space and the spatially non-stationarity of the variables. A GWR model allows different relationships between the dependent and independent variables to exist at different points in space. In other words, model parameters vary from location to location and the locally linear regression parameters at a point are affected more by observations near that point than observations further away. ^ The study area was Broward County, Florida. Broward County lies on the Atlantic coast between Palm Beach and Miami-Dade counties. In this study, a total of 67 variables were considered as potential AADT predictors, and six variables (lanes, speed, regional accessibility, direct access, density of roadway length, and density of seasonal household) were selected to develop the models. ^ To investigate the predictive powers of various AADT predictors over the space, the statistics including local r-square, local parameter estimates, and local errors were examined and mapped. The local variations in relationships among parameters were investigated, measured, and mapped to assess the usefulness of GWR methods. ^ The results indicated that the GWR models were able to better explain the variation in the data and to predict AADT with smaller errors than the ordinary linear regression models for the same dataset. Additionally, GWR was able to model the spatial non-stationarity in the data, i.e., the spatially varying relationship between AADT and predictors, which cannot be modeled in ordinary linear regression. ^