996 resultados para Nutrient efficiency
Resumo:
Summary
Resumo:
Although silicon is not recognized as a nutrient, it may benefit rice plants and may alleviate the Mn toxicity in some plant species. The dry matter yield (root, leaf, sheaths and leaf blade) and plant architecture (angle of leaf insertion and leaf arc) were evaluated in rice plants grown in nutrient solutions with three Mn doses, with and without Si addition. The treatments were arranged in a 2 x 3 factorial [with and without (2 mmol L-1) Si; three Mn doses (0.5; 2.5 and 10 µmol L-1)], in a randomized block design with 4 replications. The experimental unit was a 4 L plastic vase with 4 rice (Metica-1 cultivar) plants. Thirty nine days after keeping the seedlings in the nutrient solution the plant dry matter yield was determined; the angle of leaf insertion in the sheath and the leaf arc were measured; and the Si and Mn concentrations in roots, sheaths and leaves were determined. The analysis of variance (F test at 5 and 1 % levels) and the regression analysis (for testing plant response to Mn with the Si treatments) were performed. The Si added to the nutrient solution increased the dry matter yield of roots, sheaths and leaf blades and also decreased the angle of leaf blade insertion into the sheath and the foliar arc in the rice plant. Additionally, it ameliorated the rice plant architecture which allowed an increase in the dry matter yield. Similarly, the addition of Mn to the solution improved the architecture of the rice plants with gain in dry matter yield. As Si was added to the nutrient solution, the concentration of Mn in leaves decreased and in roots increased thus alleviating the toxic effects of Mn on the plants.
Resumo:
Tillage affects soil physical properties, e.g., porosity, and leads to different amounts of mulch on the soil surface. Consequently, tillage is related to the soil temperature and moisture regime. Soil cover, temperature and moisture were measured under corn (Zea mays) in the tenth year of five tillage systems (NT = no-tillage; CP = chisel plow and single secondary disking; CT = primary and double secondary disking; CTb = CT with crop residues burned; and CTr = CT with crop residues removed). The tillage systems were combined with five nutrient sources (C = control; MF = mineral fertilizer; PL = poultry litter; CS = cattle slurry; and SS = swine slurry). Soil cover after sowing was greatest in NT (88 %), medium in CP (38 %) and lowest in CT treatments (< 10 %), but differences decreased after corn emergence. Soil temperature was related with soil cover, and significant differences among tillage were observed at the beginning of the growing season and at corn maturity. Differences in soil temperature and moisture in the surface layer of the tilled treatments were greater during the corn cycle than in untilled treatments, due to differences in intensity of soil mobilization and mulch remaining after soil management. Nutrient sources affected soil temperature and moisture in the most intense part of the corn growth period, and were related to the variation of the corn leaf area index among treatments
Resumo:
Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and Stylosanthes guianensis) in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and (lignin+polyphenol)/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD), the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA), there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1). Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants.
Resumo:
An experiment was conducted in a growth chamber to evaluate characteristics of the rhizosphere of maize genotypes contrasting in P-use efficiency, by determining length and density of root hairs, the rhizosphere pH and the functional diversity of rhizosphere bacteria. A sample of a Red Oxisol was limed and fertilized with N, K and micronutrients. In the treatment with the highest P level, 174 mg kg-1 P was added. Each experimental unit corresponded to a PVC rhizobox filled with 2.2 dm-3 soil. The experiment was completely randomized with three replications in a 5 x 2 factorial design, corresponding to five genotypes (H1, H2 and H3 = P-efficient hybrids, H4 and H5 = P-inefficient hybrids) and two P levels (low = 3 mg dm-3, high = 29 mg dm-3). It was found that 18 days after transplanting, the nodal roots of the hybrids H3 and H2 had the longest root hairs. In general, the pH in the rhizosphere of the different genotypes was higher than in non-rhizosphere soil, irrespective of the P level. The pH was higher in the rhizosphere of lateral than of nodal roots. At low P levels, the pH variation of the hybrids H2, H4 and H5 was greater in rhizospheric than in non-rhizospheric soil. The functional microbial activity in the rhizosphere of the hybrids H3 and H5 was highest. At low soil P levels, the indices of microbial functional diversity were also higher. The microbial metabolic profile in the rhizosphere of hybrids H1, H2, H3, and H5 remained unaltered when the plants were grown at low P. The variations in the rhizosphere properties could not be related to patterns of P-use efficiency in the tested genotypes.
Resumo:
Adequate nutrient levels in plants vary according to the species or clone, age and management practice. Therefore, adjustments of the nutrient solution are often necessary according to the plant material for multiplication. This study aimed to evaluate the influence of NPK fertilization on production and leaf nutrient contents of eucalyptus cuttings in nutrient solution. The study was conducted from November 2008 to January 2009 in a greenhouse. The experimental design was completely randomized fractional factorial (4 x 4 x 4)½, with a total of 32 treatments with three replications. The treatments consisted of four doses of N (50, 100, 200 and 400 mg L-1) as urea, P (7.5, 15, 30 and 60 mg L-1) in the form of phosphoric acid and K (50, 100, 200 and 400 mg L-1) in the form of potassium chloride in the nutrient solution. Only the effect of N alone was significant for the number and dry weight of minicuttings per ministump, with a linear decreasing effect with increasing N levels. The highest number of cuttings was obtained at a dose of 50, 7.5 and 50 mg L-1 of N, P and K, respectively.
Resumo:
Nitrogen usually determines the productive potential of forage crops, although it is highly unstable in the environment. Studies on recovery rates and use efficiency are important for more reliable fertilizer recommendations to reduce costs and avoid environmental pollution. The purpose of this study was to evaluate N use efficiency and recovery rate of Alexandergrass pasture (Brachiaria - Syn. Urochloa plantaginea) as well as N-NO3- and N-NH4+ soil concentrations using different levels of N fertilization under two grazing intensities. The experiment was arranged in a randomized block design in a factorial scheme with three replications. Treatments consisted of three N rates (0, 200 and 400 kg ha-1 N) and two grazing intensities termed low mass (LM; forage mass of 2,000 kg ha-1 of DM) and high mass (HM; forage mass of 3,600 kg ha-1 of DM) under continuous stocking and variable stocking rates. Results of N fertilization with 200 kg ha-1 were better than with 400 kg ha-1 N. There was a significant effect of N rates on soil N-NO3-concentration with higher levels in the first layer of the soil profile in the treatment with 400 kg ha-1 N. Grazing intensity also affected soil N-NO3- concentration, by increasing the levels under the higher stocking rate (lower forage mass).
Resumo:
To synchronize nutrient availability with the requirements of eucalyptus during a cultivation cycle, the nutrient flow of this system must be well understood. Essential, for example, is information about nutrient dynamics in eucalyptus plantations throughout a cultivation cycle, as well as impacts on soil nutrient reserves caused by the accumulation and subsequent export of nutrients via biomass. It is also important to quantify the effect of some management practices, such as tree population density (PD) on these fluxes. Some nutrient relations in an experiment with Eucalyptus grandis, grown at different PDs in Santa Barbara, state of Minas Gerais, Brazil, were evaluated for one cultivation cycle. At forest ages of 0.25, 2.5, 4.5, and 6.75 years, evaluations were carried out in the stands at seven different PDs (between 500 and 5,000 trees ha-1) which consisted in chemical analyses of plant tissue sampled from components of the aboveground parts of the tree, from the forest floor and the litterfall. Nutrient contents and allocations of the different biomass components were estimated. In general, there were only small and statistically insignificant effects of PD on the nutrient concentration in trees. With increasing forest age, P, K, Ca and Mg concentrations were reduced in the aboveground components and the forest floor. The magnitud of biochemical nutrient cycling followed the sequence: P > K > N > Mg. At the end of the cycle, the quantities of N, P, Ca and Mg immobilized in the forest floor were higher than in the other components.
Resumo:
Summary
Resumo:
Summary
Resumo:
Measuring school efficiency is a challenging task. First, a performance measurement technique has to be selected. Within Data Envelopment Analysis (DEA), one such technique, alternative models have been developed in order to deal with environmental variables. The majority of these models lead to diverging results. Second, the choice of input and output variables to be included in the efficiency analysis is often dictated by data availability. The choice of the variables remains an issue even when data is available. As a result, the choice of technique, model and variables is probably, and ultimately, a political judgement. Multi-criteria decision analysis methods can help the decision makers to select the most suitable model. The number of selection criteria should remain parsimonious and not be oriented towards the results of the models in order to avoid opportunistic behaviour. The selection criteria should also be backed by the literature or by an expert group. Once the most suitable model is identified, the principle of permanence of methods should be applied in order to avoid a change of practices over time. Within DEA, the two-stage model developed by Ray (1991) is the most convincing model which allows for an environmental adjustment. In this model, an efficiency analysis is conducted with DEA followed by an econometric analysis to explain the efficiency scores. An environmental variable of particular interest, tested in this thesis, consists of the fact that operations are held, for certain schools, on multiple sites. Results show that the fact of being located on more than one site has a negative influence on efficiency. A likely way to solve this negative influence would consist of improving the use of ICT in school management and teaching. Planning new schools should also consider the advantages of being located on a unique site, which allows reaching a critical size in terms of pupils and teachers. The fact that underprivileged pupils perform worse than privileged pupils has been public knowledge since Coleman et al. (1966). As a result, underprivileged pupils have a negative influence on school efficiency. This is confirmed by this thesis for the first time in Switzerland. Several countries have developed priority education policies in order to compensate for the negative impact of disadvantaged socioeconomic status on school performance. These policies have failed. As a result, other actions need to be taken. In order to define these actions, one has to identify the social-class differences which explain why disadvantaged children underperform. Childrearing and literary practices, health characteristics, housing stability and economic security influence pupil achievement. Rather than allocating more resources to schools, policymakers should therefore focus on related social policies. For instance, they could define pre-school, family, health, housing and benefits policies in order to improve the conditions for disadvantaged children.
Resumo:
Summary
Resumo:
Information about nutrient extraction and exportation by crops, as well as the periods of highest nutrient demand is important for an adequate fertilization management. However, there are no studies on the nutrient uptake of short-stature hybrid castor bean. Therefore, the purpose of this study was to evaluate nutrient extraction and exportation by short-stature castor bean hybrid Lyra, in the spring-summer and fall-winter growing seasons. The experiments were conducted in the 2005/2006 spring-summer and 2006 fall-winter growing seasons on an Oxisol, in Botucatu, SP, in a randomized block design, with four replications. The plots consisted of plant samplings, which occurred 17, 31, 45, 59, 73, 97 and 120 days after emergence (DAE) in the spring-summer and 17, 31, 45, 59, 80, 100 and 120 DAE in fall-winter growing season. The growth of hybrid Lyra was slow and nutrient uptake lowest between emergence and the beginning of flowering. The period of highest dry matter (DM) accumulation rates and highest nutrient demand were observed 40 to 80 DAE, in both growing seasons. The order of nutrient extraction by the plants in the spring-summer growing season was: N>K>Ca>Mg>S>P>Fe>Mn>Zn>B>Cu>Mo. In fall-winter, S was more absorbed than Mg. Seed yield was higher in the spring-summer (2.995 kg ha-1), but nutrient extraction and exportation per ton of seed were similar in both growing seasons. Around 58 % of N and 84 % of P, and approximately half of the S and B absorbed throughout the cycle were exported with the seeds. However, most of the other nutrients accumulated in the plants returned to the soil in plant residues.
Resumo:
Silicon is considered an important chemical element for rice, because it can improve tolerance to biotic and abiotic stress. However, in many situations no positive effect of silicon was observed, probably due to genetic factors. The objective of this research was to monitor Si uptake kinetics and identify responses of rice cultivars in terms of Si uptake capacity and use. The experiment was carried out in a greenhouse of the São Paulo State University (UNESP), Brazil. The experiment was arranged in a completely randomized, factorial design with three replications. that consisted of two rice cultivars and two Si levels. Kinetic parameters (Vmax, Km, and Cmin), root morphology variables, dry matter yield, Si accumulation and levels in shoots and roots, uptake efficiency, utilization efficiency, and root/shoot ratio were evaluated. Higher Si concentrations in the nutrient solution did not increase rice dry matter. The development of the low-affinity silicon uptake system of the rice cultivar 'Caiapó' was better than of 'Maravilha'.