954 resultados para Nonsmooth Calculus
Fractional derivatives: probability interpretation and frequency response of rational approximations
Resumo:
The theory of fractional calculus (FC) is a useful mathematical tool in many applied sciences. Nevertheless, only in the last decades researchers were motivated for the adoption of the FC concepts. There are several reasons for this state of affairs, namely the co-existence of different definitions and interpretations, and the necessity of approximation methods for the real time calculation of fractional derivatives (FDs). In a first part, this paper introduces a probabilistic interpretation of the fractional derivative based on the Grünwald-Letnikov definition. In a second part, the calculation of fractional derivatives through Padé fraction approximations is analyzed. It is observed that the probabilistic interpretation and the frequency response of fraction approximations of FDs reveal a clear correlation between both concepts.
Resumo:
Several phenomena present in electrical systems motivated the development of comprehensive models based on the theory of fractional calculus (FC). Bearing these ideas in mind, in this work are applied the FC concepts to define, and to evaluate, the electrical potential of fractional order, based in a genetic algorithm optimization scheme. The feasibility and the convergence of the proposed method are evaluated.
Resumo:
This paper addresses the calculation of derivatives of fractional order for non-smooth data. The noise is avoided by adopting an optimization formulation using genetic algorithms (GA). Given the flexibility of the evolutionary schemes, a hierarchical GA composed by a series of two GAs, each one with a distinct fitness function, is established.
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e do 2.º Ciclo do Ensino Básico
Resumo:
The theory of fractional calculus goes back to the beginning of the theory of differential calculus, but its application received attention only recently. In the area of automatic control some work was developed, but the proposed algorithms are still in a research stage. This paper discusses a novel method, with two degrees of freedom, for the design of fractional discrete-time derivatives. The performance of several approximations of fractional derivatives is investigated in the perspective of nonlinear system control.
Resumo:
This paper analyzes the dynamical properties of systems with backlash and impact phenomena based on the describing function method. It is shown that this type of nonlinearity can be analyzed in the perspective of the fractional calculus theory. The fractional dynamics is compared with that of standard models.
Resumo:
In recent years, significant research in the field of electrochemistry was developed. The performance of electrical devices, depending on the processes of the electrolytes, was described and the physical origin of each parameter was established. However, the influence of the irregularity of the electrodes was not a subject of study and only recently this problem became relevant in the viewpoint of fractional calculus. This paper describes an electrolytic process in the perspective of fractional order capacitors. In this line of thought, are developed several experiments for measuring the electrical impedance of the devices. The results are analyzed through the frequency response, revealing capacitances of fractional order that can constitute an alternative to the classical integer order elements. Fractional order electric circuits are used to model and study the performance of the electrolyte processes.
Resumo:
The concept of differentiation and integration to non-integer order has its origins in the seventeen century. However, only in the second-half of the twenty century appeared the first applications related to the area of control theory. In this paper we consider the study of a heat diffusion system based on the application of the fractional calculus concepts. In this perspective, several control methodologies are investigated and compared. Simulations are presented assessing the performance of the proposed fractional-order algorithms.
Resumo:
Under the pseudoinverse control, robots with kinematical redundancy exhibit an undesirable chaotic joint motion which leads to an erratic behavior. This paper studies the complexity of fractional dynamics of the chaotic response. Fourier and wavelet analysis provides a deeper insight, helpful to know better the lack of repeatability problem of redundant manipulators. This perspective for the study of the chaotic phenomena will permit the development of superior trajectory control algorithms.
Resumo:
This paper studies the dynamics of foot–ground interaction in hexapod locomotion systems. For that objective the robot motion is characterized in terms of several locomotion variables and the ground is modelled through a non-linear spring-dashpot system, with parameters based on the studies of soil mechanics. Moreover, it is adopted an algorithm with foot-force feedback to control the robot locomotion. A set of model-based experiments reveals the influence of the locomotion velocity on the foot–ground transfer function, which presents complex-order dynamics.
Resumo:
The Maxwell equations constitute a formalism for the development of models describing electromagnetic phenomena. The four Maxwell laws have been adopted successfully in many applications and involve only the integer order differential calculus. Recently, a closer look for the cases of transmission lines, electrical motors and transformers, that reveal the so-called skin effect, motivated a new perspective towards the replacement of classical models by fractional-order mathematical descriptions. Bearing these facts in mind this paper addresses the concept of static fractional electric potential. The fractional potential was suggested some years ago. However, the idea was not fully explored and practical methods of implementation were not proposed. In this line of thought, this paper develops a new approximation algorithm for establishing the fractional order electrical potential and analyzes its characteristics.
Resumo:
O trabalho apresentado centra-se na determinação dos custos de construção de condutas de pequenos e médios diâmetros em Polietileno de Alta Densidade (PEAD) para saneamento básico, tendo como base a metodologia descrita no livro Custos de Construção e Exploração – Volume 9 da série Gestão de Sistemas de Saneamento Básico, de Lencastre et al. (1994). Esta metodologia descrita no livro já referenciado, nos procedimentos de gestão de obra, e para tal foram estimados custos unitários de diversos conjuntos de trabalhos. Conforme Lencastre et al (1994), “esses conjuntos são referentes a movimentos de terras, tubagens, acessórios e respetivos órgãos de manobra, pavimentações e estaleiro, estando englobado na parte do estaleiro trabalhos acessórios correspondentes à obra.” Os custos foram obtidos analisando vários orçamentos de obras de saneamento, resultantes de concursos públicos de empreitadas recentemente realizados. Com vista a tornar a utilização desta metodologia numa ferramenta eficaz, foram organizadas folhas de cálculo que possibilitam obter estimativas realistas dos custos de execução de determinada obra em fases anteriores ao desenvolvimento do projeto, designadamente numa fase de preparação do plano diretor de um sistema ou numa fase de elaboração de estudos de viabilidade económico-financeiros, isto é, mesmo antes de existir qualquer pré-dimensionamento dos elementos do sistema. Outra técnica implementada para avaliar os dados de entrada foi a “Análise Robusta de Dados”, Pestana (1992). Esta metodologia permitiu analisar os dados mais detalhadamente antes de se formularem hipóteses para desenvolverem a análise de risco. A ideia principal é o exame bastante flexível dos dados, frequentemente antes mesmo de os comparar a um modelo probabilístico. Assim, e para um largo conjunto de dados, esta técnica possibilitou analisar a disparidade dos valores encontrados para os diversos trabalhos referenciados anteriormente. Com os dados recolhidos, e após o seu tratamento, passou-se à aplicação de uma metodologia de Análise de Risco, através da Simulação de Monte Carlo. Esta análise de risco é feita com recurso a uma ferramenta informática da Palisade, o @Risk, disponível no Departamento de Engenharia Civil. Esta técnica de análise quantitativa de risco permite traduzir a incerteza dos dados de entrada, representada através de distribuições probabilísticas que o software disponibiliza. Assim, para por em prática esta metodologia, recorreu-se às folhas de cálculo que foram realizadas seguindo a abordagem proposta em Lencastre et al (1994). A elaboração e a análise dessas estimativas poderão conduzir à tomada de decisões sobre a viabilidade da ou das obras a realizar, nomeadamente no que diz respeito aos aspetos económicos, permitindo uma análise de decisão fundamentada quanto à realização dos investimentos.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Relatório de Estágio para obtenção do grau de Mestre em Engenharia na Área de Especializção em Edificações
Resumo:
Fractional dynamics is a growing topic in theoretical and experimental scientific research. A classical problem is the initialization required by fractional operators. While the problem is clear from the mathematical point of view, it constitutes a challenge in applied sciences. This paper addresses the problem of initialization and its effect upon dynamical system simulation when adopting numerical approximations. The results are compatible with system dynamics and clarify the formulation of adequate values for the initial conditions in numerical simulations.