968 resultados para Nonsmooth Calculus
Resumo:
In this paper we address a problem arising in risk management; namely the study of price variations of different contingent claims in the Black-Scholes model due to anticipating future events. The method we propose to use is an extension of the classical Vega index, i.e. the price derivative with respect to the constant volatility, in thesense that we perturb the volatility in different directions. Thisdirectional derivative, which we denote the local Vega index, will serve as the main object in the paper and one of the purposes is to relate it to the classical Vega index. We show that for all contingent claims studied in this paper the local Vega index can be expressed as a weighted average of the perturbation in volatility. In the particular case where the interest rate and the volatility are constant and the perturbation is deterministic, the local Vega index is an average of this perturbation multiplied by the classical Vega index. We also study the well-known goal problem of maximizing the probability of a perfect hedge and show that the speed of convergence is in fact dependent of the local Vega index.
Resumo:
This paper studies the rate of convergence of an appropriatediscretization scheme of the solution of the Mc Kean-Vlasovequation introduced by Bossy and Talay. More specifically,we consider approximations of the distribution and of thedensity of the solution of the stochastic differentialequation associated to the Mc Kean - Vlasov equation. Thescheme adopted here is a mixed one: Euler/weakly interactingparticle system. If $n$ is the number of weakly interactingparticles and $h$ is the uniform step in the timediscretization, we prove that the rate of convergence of thedistribution functions of the approximating sequence in the $L^1(\Omega\times \Bbb R)$ norm and in the sup norm is of theorder of $\frac 1{\sqrt n} + h $, while for the densities is ofthe order $ h +\frac 1 {\sqrt {nh}}$. This result is obtainedby carefully employing techniques of Malliavin Calculus.
Resumo:
By means of classical Itô's calculus we decompose option prices asthe sum of the classical Black-Scholes formula with volatility parameterequal to the root-mean-square future average volatility plus a term dueby correlation and a term due to the volatility of the volatility. Thisdecomposition allows us to develop first and second-order approximationformulas for option prices and implied volatilities in the Heston volatilityframework, as well as to study their accuracy. Numerical examples aregiven.
Resumo:
In this paper, generalizing results in Alòs, León and Vives (2007b), we see that the dependence of jumps in the volatility under a jump-diffusion stochastic volatility model, has no effect on the short-time behaviour of the at-the-money implied volatility skew, although the corresponding Hull and White formula depends on the jumps. Towards this end, we use Malliavin calculus techniques for Lévy processes based on Løkka (2004), Petrou (2006), and Solé, Utzet and Vives (2007).
Resumo:
We address the performance optimization problem in a single-stationmulticlass queueing network with changeover times by means of theachievable region approach. This approach seeks to obtainperformance bounds and scheduling policies from the solution of amathematical program over a relaxation of the system's performanceregion. Relaxed formulations (including linear, convex, nonconvexand positive semidefinite constraints) of this region are developedby formulating equilibrium relations satisfied by the system, withthe help of Palm calculus. Our contributions include: (1) newconstraints formulating equilibrium relations on server dynamics;(2) a flow conservation interpretation of the constraintspreviously derived by the potential function method; (3) newpositive semidefinite constraints; (4) new work decomposition lawsfor single-station multiclass queueing networks, which yield newconvex constraints; (5) a unified buffer occupancy method ofperformance analysis obtained from the constraints; (6) heuristicscheduling policies from the solution of the relaxations.
Resumo:
In this paper we use Malliavin calculus techniques to obtain an expression for the short-time behavior of the at-the-money implied volatility skew for a generalization of the Bates model, where the volatility does not need to be neither a difussion, nor a Markov process as the examples in section 7 show. This expression depends on the derivative of the volatility in the sense of Malliavin calculus.
Resumo:
We show that the Heston volatility or equivalently the Cox-Ingersoll-Ross process is Malliavin differentiable and give an explicit expression for the derivative. This result assures the applicability of Malliavin calculus in the framework of the Heston stochastic volatility model and the Cox-Ingersoll-Ross model for interest rates.
Resumo:
Floods are the natural hazards that produce the highest number of casualties and material damage in the Western Mediterranean. An improvement in flood risk assessment and study of a possible increase in flooding occurrence are therefore needed. To carry out these tasks it is important to have at our disposal extensive knowledge on historical floods and to find an efficient way to manage this geographical data. In this paper we present a complete flood database spanning the 20th century for the whole of Catalonia (NE Spain), which includes documentary information (affected areas and damage) and instrumental information (meteorological and hydrological records). This geodatabase, named Inungama, has been implemented on a GIS (Geographical Information System) in order to display all the information within a given geographical scenario, as well as to carry out an analysis thereof using queries, overlays and calculus. Following a description of the type and amount of information stored in the database and the structure of the information system, the first applications of Inungama are presented. The geographical distribution of floods shows the localities which are more likely to be flooded, confirming that the most affected municipalities are the most densely populated ones in coastal areas. Regarding the existence of an increase in flooding occurrence, a temporal analysis has been carried out, showing a steady increase over the last 30 years.
Resumo:
We study spacetime diffeomorphisms in the Hamiltonian and Lagrangian formalisms of generally covariant systems. We show that the gauge group for such a system is characterized by having generators which are projectable under the Legendre map. The gauge group is found to be much larger than the original group of spacetime diffeomorphisms, since its generators must depend on the lapse function and shift vector of the spacetime metric in a given coordinate patch. Our results are generalizations of earlier results by Salisbury and Sundermeyer. They arise in a natural way from using the requirement of equivalence between Lagrangian and Hamiltonian formulations of the system, and they are new in that the symmetries are realized on the full set of phase space variables. The generators are displayed explicitly and are applied to the relativistic string and to general relativity.
Resumo:
We study the mean-first-passage-time problem for systems driven by the coin-toss square-wave signal. Exact analytic solutions are obtained for the driftless case. We also obtain approximate solutions for the potential case. The mean-first-passage time exhibits discontinuities and a remarkable nonsmooth oscillatory behavior which, to our knowledge, has not been observed for other kinds of driving noise.
Resumo:
We derive the chaotic expansion of the product of nth- and first-order multiple stochastic integrals with respect to certain normal martingales. This is done by application of the classical and quantum product formulae for multiple stochastic integrals. Our approach extends existing results on chaotic calculus for normal martingales and exhibits properties, relative to multiple stochastic integrals, polynomials and Wick products, that characterize the Wiener and Poisson processes.
Resumo:
Effect size indices are indispensable for carrying out meta-analyses and can also be seen as an alternative for making decisions about the effectiveness of a treatment in an individual applied study. The desirable features of the procedures for quantifying the magnitude of intervention effect include educational/clinical meaningfulness, calculus easiness, insensitivity to autocorrelation, low false alarm and low miss rates. Three effect size indices related to visual analysis are compared according to the aforementioned criteria. The comparison is made by means of data sets with known parameters: degree of serial dependence, presence or absence of general trend, changes in level and/or in slope. The percent of nonoverlapping data showed the highest discrimination between data sets with and without intervention effect. In cases when autocorrelation or trend is present, the percentage of data points exceeding the median may be a better option to quantify the effectiveness of a psychological treatment.