927 resultados para Nonlinear damping
Resumo:
Almost all research fields in geosciences use numerical models and observations and combine these using data-assimilation techniques. With ever-increasing resolution and complexity, the numerical models tend to be highly nonlinear and also observations become more complicated and their relation to the models more nonlinear. Standard data-assimilation techniques like (ensemble) Kalman filters and variational methods like 4D-Var rely on linearizations and are likely to fail in one way or another. Nonlinear data-assimilation techniques are available, but are only efficient for small-dimensional problems, hampered by the so-called ‘curse of dimensionality’. Here we present a fully nonlinear particle filter that can be applied to higher dimensional problems by exploiting the freedom of the proposal density inherent in particle filtering. The method is illustrated for the three-dimensional Lorenz model using three particles and the much more complex 40-dimensional Lorenz model using 20 particles. By also applying the method to the 1000-dimensional Lorenz model, again using only 20 particles, we demonstrate the strong scale-invariance of the method, leading to the optimistic conjecture that the method is applicable to realistic geophysical problems. Copyright c 2010 Royal Meteorological Society
Resumo:
though discrete cell-based frameworks are now commonly used to simulate a whole range of biological phenomena, it is typically not obvious how the numerous different types of model are related to one another, nor which one is most appropriate in a given context. Here we demonstrate how individual cell movement on the discrete scale modeled using nonlinear force laws can be described by nonlinear diffusion coefficients on the continuum scale. A general relationship between nonlinear force laws and their respective diffusion coefficients is derived in one spatial dimension and, subsequently, a range of particular examples is considered. For each case excellent agreement is observed between numerical solutions of the discrete and corresponding continuum models. Three case studies are considered in which we demonstrate how the derived nonlinear diffusion coefficients can be used to (a) relate different discrete models of cell behavior; (b) derive discrete, intercell force laws from previously posed diffusion coefficients, and (c) describe aggregative behavior in discrete simulations.
Resumo:
A guest/host material system in which the guest molecule is a functionalized, optically nonlinear, chromophore is described. A verification of the crosslinking process, an assessment of the nonlinear properties of the chromophore, using Solvatochromic methods, and an investigation of the electric field induced molecular orientation using second-harmonic generation are included.
Resumo:
Photoinduced poling (PIP) is a new technique which allows the room‐temperature preparation of guest/host polymer films exhibiting significant polar order for nonlinear optical applications. We report a comparison of this novel technique with the conventional electrode poling procedure performed at the glass transition temperature of the polymer using disperse red 1/poly(methylmethacrylate) films. In particular, in situ second harmonic generation measurements show that levels of polar order achieved using these two techniques are similar. In contrast, the stability of the polar order is reduced by up to 20 times in terms of the decay time constant in films prepared using PIP although the stability is very dependent upon the temperature at which the poling was performed.
Resumo:
The general stability theory of nonlinear receding horizon controllers has attracted much attention over the last fifteen years, and many algorithms have been proposed to ensure closed-loop stability. On the other hand many reports exist regarding the use of artificial neural network models in nonlinear receding horizon control. However, little attention has been given to the stability issue of these specific controllers. This paper addresses this problem and proposes to cast the nonlinear receding horizon control based on neural network models within the framework of an existing stabilising algorithm.
Resumo:
Along the lines of the nonlinear response theory developed by Ruelle, in a previous paper we have proved under rather general conditions that Kramers-Kronig dispersion relations and sum rules apply for a class of susceptibilities describing at any order of perturbation the response of Axiom A non equilibrium steady state systems to weak monochromatic forcings. We present here the first evidence of the validity of these integral relations for the linear and the second harmonic response for the perturbed Lorenz 63 system, by showing that numerical simulations agree up to high degree of accuracy with the theoretical predictions. Some new theoretical results, showing how to derive asymptotic behaviors and how to obtain recursively harmonic generation susceptibilities for general observables, are also presented. Our findings confirm the conceptual validity of the nonlinear response theory, suggest that the theory can be extended for more general non equilibrium steady state systems, and shed new light on the applicability of very general tools, based only upon the principle of causality, for diagnosing the behavior of perturbed chaotic systems and reconstructing their output signals, in situations where the fluctuation-dissipation relation is not of great help.
Resumo:
The integral manifold approach captures from a geometric point of view the intrinsic two-time-scale behavior of singularly perturbed systems. An important class of nonlinear singularly perturbed systems considered in this note are fast actuator-type systems. For a class of fast actuator-type systems, which includes many physical systems, an explicit corrected composite control, the sum of a slow control and a fast control, is derived. This corrected control will steer the system exactly to a required design manifold.
Resumo:
The integral manifold approach captures from a geometric point of view the intrinsic two-time-scale behavior of singularly perturbed systems. An important class of nonlinear singularly perturbed systems considered in this note are fast actuator-type systems. For a class of fast actuator-type systems, which includes many physical systems, an explicit corrected composite control, the sum of a slow control and a fast control, is derived. This corrected control will steer the system exactly to a required design manifold.
Resumo:
Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled � ight. The construction of a robust closed-loop control that extends the stable and decoupled � ight envelope as far as possible is pursued. For the study of these systems, nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and to investigate control effects on dynamic behavior. Linear feedback control designs constructed by eigenstructure assignment methods at a � xed � ight condition are investigated for a simple nonlinear aircraft model. Bifurcation analysis, in conjunction with linear control design methods, is shown to aid control law design for the nonlinear system.
Resumo:
Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled flight. The aim of this work is to construct a robust closed-loop control that optimally extends the stable and decoupled flight envelope. For the study of these systems nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and investigate control effects on dynamic behavior. In this work linear feedback control designs calculated by eigenstructure assignment methods are investigated for a simple aircraft model at a fixed flight condition. Bifurcation analysis in conjunction with linear control design methods is shown to aid control law design for the nonlinear system.
Resumo:
In this paper a support vector machine (SVM) approach for characterizing the feasible parameter set (FPS) in non-linear set-membership estimation problems is presented. It iteratively solves a regression problem from which an approximation of the boundary of the FPS can be determined. To guarantee convergence to the boundary the procedure includes a no-derivative line search and for an appropriate coverage of points on the FPS boundary it is suggested to start with a sequential box pavement procedure. The SVM approach is illustrated on a simple sine and exponential model with two parameters and an agro-forestry simulation model.
Resumo:
Previous studies using coupled general circulation models (GCMs) suggest that the atmosphere model plays a dominant role in the modeled El Nin ̃ o–Southern Oscillation (ENSO), and that intermodel differences in the thermodynamical damping of sea surface temperatures (SSTs) are a dominant contributor to the ENSO amplitude diversity. This study presents a detailed analysis of the shortwave flux feedback (aSW) in 12 Coupled Model Intercomparison Project phase 3 (CMIP3) simulations, motivated by findings that aSW is the primary contributor to model thermodynamical damping errors. A ‘‘feedback decomposition method,’’ developed to elucidate the aSW biases, shows that all models un- derestimate the dynamical atmospheric response to SSTs in the eastern equatorial Pacific, leading to un- derestimated aSW values. Biases in the cloud response to dynamics and the shortwave interception by clouds also contribute to errors in aSW. Changes in the aSW feedback between the coupled and corresponding atmosphere-only simulations are related to changes in the mean dynamics. A large nonlinearity is found in the observed and modeled SW flux feedback, hidden when linearly cal- culating aSW. In the observations, two physical mechanisms are proposed to explain this nonlinearity: 1) a weaker subsidence response to cold SST anomalies than the ascent response to warm SST anomalies and 2) a nonlinear high-level cloud cover response to SST. The shortwave flux feedback nonlinearity tends to be underestimated by the models, linked to an underestimated nonlinearity in the dynamical response to SST. The process-based methodology presented in this study may help to correct model ENSO atmospheric biases, ultimately leading to an improved simulation of ENSO in GCMs.
Resumo:
A mechanism for amplification of mountain waves, and their associated drag, by parametric resonance is investigated using linear theory and numerical simulations. This mechanism, which is active when the Scorer parameter oscillates with height, was recently classified by previous authors as intrinsically nonlinear. Here it is shown that, if friction is included in the simplest possible form as a Rayleigh damping, and the solution to the Taylor-Goldstein equation is expanded in a power series of the amplitude of the Scorer parameter oscillation, linear theory can replicate the resonant amplification produced by numerical simulations with some accuracy. The drag is significantly altered by resonance in the vicinity of n/l_0 = 2, where l_0 is the unperturbed value of the Scorer parameter and n is the wave number of its oscillation. Depending on the phase of this oscillation, the drag may be substantially amplified or attenuated relative to its non-resonant value, displaying either single maxima or minima, or double extrema near n/l_0 = 2. Both non-hydrostatic effects and friction tend to reduce the magnitude of the drag extrema. However, in exactly inviscid conditions, the single drag maximum and minimum are suppressed. As in the atmosphere friction is often small but non-zero outside the boundary layer, modelling of the drag amplification mechanism addressed here should be quite sensitive to the type of turbulence closure employed in numerical models, or to computational dissipation in nominally inviscid simulations.
Resumo:
It is known that the empirical orthogonal function method is unable to detect possible nonlinear structure in climate data. Here, isometric feature mapping (Isomap), as a tool for nonlinear dimensionality reduction, is applied to 1958–2001 ERA-40 sea-level pressure anomalies to study nonlinearity of the Asian summer monsoon intraseasonal variability. Using the leading two Isomap time series, the probability density function is shown to be bimodal. A two-dimensional bivariate Gaussian mixture model is then applied to identify the monsoon phases, the obtained regimes representing enhanced and suppressed phases, respectively. The relationship with the large-scale seasonal mean monsoon indicates that the frequency of monsoon regime occurrence is significantly perturbed in agreement with conceptual ideas, with preference for enhanced convection on intraseasonal time scales during large-scale strong monsoons. Trend analysis suggests a shift in concentration of monsoon convection, with less emphasis on South Asia and more on the East China Sea.
Resumo:
The validity of approximating radiative heating rates in the middle atmosphere by a local linear relaxation to a reference temperature state (i.e., ‘‘Newtonian cooling’’) is investigated. Using radiative heating rate and temperature output from a chemistry–climate model with realistic spatiotemporal variability and realistic chemical and radiative parameterizations, it is found that a linear regressionmodel can capture more than 80% of the variance in longwave heating rates throughout most of the stratosphere and mesosphere, provided that the damping rate is allowed to vary with height, latitude, and season. The linear model describes departures from the climatological mean, not from radiative equilibrium. Photochemical damping rates in the upper stratosphere are similarly diagnosed. Threeimportant exceptions, however, are found.The approximation of linearity breaks down near the edges of the polar vortices in both hemispheres. This nonlinearity can be well captured by including a quadratic term. The use of a scale-independentdamping rate is not well justified in the lower tropical stratosphere because of the presence of a broad spectrum of vertical scales. The local assumption fails entirely during the breakup of the Antarctic vortex, where large fluctuations in temperature near the top of the vortex influence longwave heating rates within the quiescent region below. These results are relevant for mechanistic modeling studies of the middle atmosphere, particularly those investigating the final Antarctic warming.