914 resultados para Noncommutative Geometry
Resumo:
The Dirac field is studied in a Lyra space-time background by means of the classical Schwinger Variational Principle. We obtain the equations of motion, establish the conservation laws, and get a scale relation relating the energy-momentum and spin tensors. Such scale relation is an intrinsic property for matter fields in Lyra background.
Resumo:
We study the noncommutative generalization of (Euclidean) integrable models in two dimensions, specifically the sine- and sinh-Gordon and the U(N) principal chiral models. By looking at tree-level amplitudes for the sinh-Gordon model we show that its naive noncommutative generalization is not integrable. on the other hand, the addition of extra constraints, obtained through the generalization of the zero-curvature method, renders the model integrable. We construct explicit nonlocal nontrivial conserved charges for the U(N) principal chiral model using the Brezin-Itzykson-Zinn-Justin-Zuber method. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We introduce a master action in non-commutative space, out of which we obtain the action of the non-commutative Maxwell-Chern-Simons theory. Then, we look for the corresponding dual theory at both first and second order in the non-commutative parameter. At the first order, the dual theory happens to be, precisely, the action obtained from the usual commutative self-dual model by generalizing the Chern-Simons term to its non-commutative version, including a cubic term. Since this resulting theory is also equivalent to the non-commutative massive Thirring model in the large fermion mass limit, we remove, as a byproduct, the obstacles arising in the generalization to non-commutative space, and to the first non-trivial order in the non-commutative parameter, of the bosonization in three dimensions. Then, performing calculations at the second order in the non-commutative parameter, we explicitly compute a new dual theory which differs from the non-commutative self-dual model and, further, differs also from other previous results and involves a very simple expression in terms of ordinary fields. In addition, a remarkable feature of our results is that the dual theory is local, unlike what happens in the non-Abelian, but commutative case. We also conclude that the generalization to non-commutative space of bosonization in three dimensions is possible only when considering the first non-trivial corrections over ordinary space.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Husserl left many unpublished drafts explaining (or trying to) his views on spatial representation and geometry, such as, particularly, those collected in the second part of Studien zur Arithmetik und Geometrie (Hua XXI), but no completely articulate work on the subject. In this paper, I put forward an interpretation of what those views might have been. Husserl, I claim, distinguished among different conceptions of space, the space of perception (constituted from sensorial data by intentionally motivated psychic functions), that of physical geometry (or idealized perceptual space), the space of the mathematical science of physical nature (in which science, not only raw perception has a word) and the abstract spaces of mathematics (free creations of the mathematical mind), each of them with its peculiar geometrical structure. Perceptual space is proto-Euclidean and the space of physical geometry Euclidean, but mathematical physics, Husserl allowed, may find it convenient to represent physical space with a non-Euclidean structure. Mathematical spaces, on their turn, can be endowed, he thinks, with any geometry mathematicians may find interesting. Many other related questions are addressed here, in particular those concerning the a priori or a posteriori character of the many geometric features of perceptual space (bearing in mind that there are at least two different notions of a priori in Husserl, which we may call the conceptual and the transcendental a priori). I conclude with an overview of Weyl's ideas on the matter, since his philosophical conceptions are often traceable back to his former master, Husserl.
Resumo:
Recent studies have demonstrated that the sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field. In this paper, a two-dimensional computer simulation of a magnetic-field-enhanced PHI system is described. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform molecular nitrogen plasma. A static magnetic field is created by a small coil installed inside the target holder. The vacuum chamber is filled with background nitrogen gas to form a plasma in which collisions of electrons and neutrals are simulated by the Monte Carlo algorithm. It is found that a high-density plasma is formed around the target due to the intense background gas ionization by the magnetized electrons drifting in the crossed E x B fields. The effect of the magnetic field intensity, the target bias, and the gas pressure on the sheath dynamics and implantation current of the PHI system is investigated.
Resumo:
The effect of magnetic field enhanced plasma immersion ion implantation (PIII) in silicon substrate has been investigated at low and high pulsed bias voltages. The magnetic field in magnetic bottle configuration was generated by two magnetic coils installed outside the vacuum chamber. The presence of both, electric and magnetic field in PIII creates a system of crossed E x B fields, promoting plasma rotation around the target. The magnetized electrons drifting in crossed E x B fields provide electron-neutral collision. Consequently, the efficient background gas ionization augments the plasma density around the target where a magnetic confinement is achieved. As a result, the ion current density increases, promoting changes in the samples surface properties, especially in the surface roughness and wettability and also an increase of implantation dose and depth. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
We extend the geometric treatment done for the Majorana-Weyl fermions in two dimensions by Sanielevici and Semenoff to chiral bosons on a circle. For this case we obtain a generalized Floreanini-Jackiw Lagrangian density, and the corresponding gravitational (or Virasoro) anomalies are found as expected. © 1989 The American Physical Society.
Resumo:
In this paper we relate the numerical invariants attached to a projective curve, called the order sequence of the curve, to the geometry of the varieties of tangent linear spaces to the curve and to the Gauss maps of the curve. © 1992 Sociedade Brasileira de Matemática.
Resumo:
We introduce a new hybrid approach to determine the ground state geometry of molecular systems. Firstly, we compared the ability of genetic algorithm (GA) and simulated annealing (SA) to find the lowest energy geometry of silicon clusters with six and 10 atoms. This comparison showed that GA exhibits fast initial convergence, but its performance deteriorates as it approaches the desired global extreme. Interestingly, SA showed a complementary convergence pattern, in addition to high accuracy. Our new procedure combines selected features from GA and SA to achieve weak dependence on initial parameters, parallel search strategy, fast convergence and high accuracy. This hybrid algorithm outperforms GA and SA by one order of magnitude for small silicon clusters (Si6 and Si10). Next, we applied the hybrid method to study the geometry of a 20-atom silicon cluster. It was able to find an original geometry, apparently lower in energy than those previously described in literature. In principle, our procedure can be applied successfully to any molecular system. © 1998 Elsevier Science B.V.
Resumo:
The Hamiltonian formulation of the teleparallel equivalent of general relativity is considered. Definitions of energy, momentum and angular momentum of the gravitational field arise from the integral form of the constraint equations of the theory. In particular, the gravitational energy-momentum is given by the integral of scalar densities over a three-dimensional spacelike hypersurface. The definition for the gravitational energy is investigated in the context of the Kerr black hole. In the evaluation of the energy contained within the external event horizon of the Kerr black hole, we obtain a value strikingly close to the irreducible mass of the latter. The gravitational angular momentum is evaluated for the gravitational field of a thin, slowly rotating mass shell. © 2002 The American Physical Society.
Resumo:
In the context of the hamiltonian formulation of the teleparallel equivalent of general relativity we compute the gravitational energy of Kerr and Kerr Anti-de Sitter (Kerr-AdS) space-times. The present calculation is carried out by means of an expression for the energy of the gravitational field that naturally arises from the integral form of the constraint equations of the formalism. In each case, the energy is exactly computed for finite and arbitrary spacelike two-spheres, without any restriction on the metric parameters. In particular, we evaluate the energy at the outer event horizon of the black holes. © SISSA/ISAS 2003.
Resumo:
We analyze the surface geometry of the spherical even-even Ca, Ni, Sn and Pb nuclei using two approaches: The relativistic Dirac-Hartree-Bogoliubov one with several parameter sets and the non-relativistic Hartree-Fock-Bogoliubov one with the Gogny force. The proton and neutron density distributions are fitted to two-parameter Fermi density distributions to obtain the half-density radii and diffuseness parameters. Those parameters allow us to determine the nature of the neutron skins predicted by the models. The calculations are compared with existing experimental data. © 2007 American Institute of Physics.