921 resultados para Non-linear mechanics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we examine the equilibrium states of finite amplitude flow in a horizontal fluid layer with differential heating between the two rigid boundaries. The solutions to the Navier-Stokes equations are obtained by means of a perturbation method for evaluating the Landau constants and through a Newton-Raphson iterative method that results from the Fourier expansion of the solutions that bifurcate above the linear stability threshold of infinitesimal disturbances. The results obtained from these two different methods of evaluating the convective flow are compared in the neighborhood of the critical Rayleigh number. We find that for small Prandtl numbers the discrepancy of the two methods is noticeable. © 2009 The Physical Society of Japan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well established that hydrodynamic journal bearings are responsible for self-excited vibrations and have the effect of lowering the critical speeds of rotor systems. The forces within the oil film wedge, generated by the vibrating journal, may be represented by displacement and velocity coefficient~ thus allowing the dynamical behaviour of the rotor to be analysed both for stability purposes and for anticipating the response to unbalance. However, information describing these coefficients is sparse, misleading, and very often not applicable to industrial type bearings. Results of a combined analytical and experimental investigation into the hydrodynamic oil film coefficients operating in the laminar region are therefore presented, the analysis being applied to a 120 degree partial journal bearing having a 5.0 in diameter journal and a LID ratio of 1.0. The theoretical analysis shows that for this type of popular bearing, the eight linearized coefficients do not accurately describe the behaviour of the vibrating journal based on the theory of small perturbations, due to them being masked by the presence of nonlinearity. A method is developed using the second order terms of Taylor expansion whereby design charts are provided which predict the twentyeight force coefficients for both aligned, and for varying amounts of journal misalignment. The resulting non-linear equations of motion are solved using a modified Newton-Raphson method whereby the whirl trajectories are obtained, thus providing a physical appreciation of the bearing characteristics under dynamically loaded conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis applies a hierarchical latent trait model system to a large quantity of data. The motivation for it was lack of viable approaches to analyse High Throughput Screening datasets which maybe include thousands of data points with high dimensions. High Throughput Screening (HTS) is an important tool in the pharmaceutical industry for discovering leads which can be optimised and further developed into candidate drugs. Since the development of new robotic technologies, the ability to test the activities of compounds has considerably increased in recent years. Traditional methods, looking at tables and graphical plots for analysing relationships between measured activities and the structure of compounds, have not been feasible when facing a large HTS dataset. Instead, data visualisation provides a method for analysing such large datasets, especially with high dimensions. So far, a few visualisation techniques for drug design have been developed, but most of them just cope with several properties of compounds at one time. We believe that a latent variable model (LTM) with a non-linear mapping from the latent space to the data space is a preferred choice for visualising a complex high-dimensional data set. As a type of latent variable model, the latent trait model can deal with either continuous data or discrete data, which makes it particularly useful in this domain. In addition, with the aid of differential geometry, we can imagine the distribution of data from magnification factor and curvature plots. Rather than obtaining the useful information just from a single plot, a hierarchical LTM arranges a set of LTMs and their corresponding plots in a tree structure. We model the whole data set with a LTM at the top level, which is broken down into clusters at deeper levels of t.he hierarchy. In this manner, the refined visualisation plots can be displayed in deeper levels and sub-clusters may be found. Hierarchy of LTMs is trained using expectation-maximisation (EM) algorithm to maximise its likelihood with respect to the data sample. Training proceeds interactively in a recursive fashion (top-down). The user subjectively identifies interesting regions on the visualisation plot that they would like to model in a greater detail. At each stage of hierarchical LTM construction, the EM algorithm alternates between the E- and M-step. Another problem that can occur when visualising a large data set is that there may be significant overlaps of data clusters. It is very difficult for the user to judge where centres of regions of interest should be put. We address this problem by employing the minimum message length technique, which can help the user to decide the optimal structure of the model. In this thesis we also demonstrate the applicability of the hierarchy of latent trait models in the field of document data mining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we examine the equilibrium states of periodic finite amplitude flow in a horizontal channel with differential heating between the two rigid boundaries. The solutions to the Navier-Stokes equations are obtained by means of a perturbation method for evaluating the Landau coefficients and through a Newton-Raphson iterative method that results from the Fourier expansion of the solutions that bifurcate above the linear stability threshold of infini- tesimal disturbances. The results obtained from these two different methods of evaluating the convective flow are compared in the neighbourhood of the critical Rayleigh number. We find that for small Prandtl numbers the discrepancy of the two methods is noticeable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exploratory analysis of data seeks to find common patterns to gain insights into the structure and distribution of the data. In geochemistry it is a valuable means to gain insights into the complicated processes making up a petroleum system. Typically linear visualisation methods like principal components analysis, linked plots, or brushing are used. These methods can not directly be employed when dealing with missing data and they struggle to capture global non-linear structures in the data, however they can do so locally. This thesis discusses a complementary approach based on a non-linear probabilistic model. The generative topographic mapping (GTM) enables the visualisation of the effects of very many variables on a single plot, which is able to incorporate more structure than a two dimensional principal components plot. The model can deal with uncertainty, missing data and allows for the exploration of the non-linear structure in the data. In this thesis a novel approach to initialise the GTM with arbitrary projections is developed. This makes it possible to combine GTM with algorithms like Isomap and fit complex non-linear structure like the Swiss-roll. Another novel extension is the incorporation of prior knowledge about the structure of the covariance matrix. This extension greatly enhances the modelling capabilities of the algorithm resulting in better fit to the data and better imputation capabilities for missing data. Additionally an extensive benchmark study of the missing data imputation capabilities of GTM is performed. Further a novel approach, based on missing data, will be introduced to benchmark the fit of probabilistic visualisation algorithms on unlabelled data. Finally the work is complemented by evaluating the algorithms on real-life datasets from geochemical projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exploratory analysis of petroleum geochemical data seeks to find common patterns to help distinguish between different source rocks, oils and gases, and to explain their source, maturity and any intra-reservoir alteration. However, at the outset, one is typically faced with (a) a large matrix of samples, each with a range of molecular and isotopic properties, (b) a spatially and temporally unrepresentative sampling pattern, (c) noisy data and (d) often, a large number of missing values. This inhibits analysis using conventional statistical methods. Typically, visualisation methods like principal components analysis are used, but these methods are not easily able to deal with missing data nor can they capture non-linear structure in the data. One approach to discovering complex, non-linear structure in the data is through the use of linked plots, or brushing, while ignoring the missing data. In this paper we introduce a complementary approach based on a non-linear probabilistic model. Generative topographic mapping enables the visualisation of the effects of very many variables on a single plot, while also dealing with missing data. We show how using generative topographic mapping also provides an optimal method with which to replace missing values in two geochemical datasets, particularly where a large proportion of the data is missing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the recent progress of information theory in optical communications, and describe the current experimental results and associated advances in various individual technologies which increase the information capacity. We confirm the widely held belief that the reported capacities are approaching the fundamental limits imposed by signal-to-noise ratio and the distributed non-linearity of conventional optical fibres, resulting in the reduction in the growth rate of communication capacity. We also discuss the techniques which are promising to increase and/or approach the information capacity limit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present measurements on the non-linear temperature response of fibre Bragg gratings recorded in pure and trans-4-stilbenemethanol-doped polymethyl methacrylate (PMMA) holey fibres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a Switched Reluctance Motor (SRM), the flux linkage characteristic is the most basic magnetic characteristic, and many other quantities, including the incremental inductance, back emf, and electromagnetic torque can be determined indirectly from it. In this paper, two methods of measuring the flux linkage profile of an SRM from the phase winding voltage and current measurements, with and without rotor locking devices, are presented. Torque, incremental inductance and back emf characteristics of the SRM are then obtained from the flux linkage measurements. The torque of the SRM is also measured directly as a comparison, and the closeness of the calculated and directly measured torque curves suggests the validity of the method to obtain the SRM torque, incremental inductance and back emf profiles from the flux linkage measurements. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT