933 resultados para Non-line-of-sight
Resumo:
We analyze mutual alignment errors due to wave-front aberrations. To solve the central obscured problem, we introduce modified Zernike polynomials, which are a set of complete orthogonal polynomials. It is found that different aberrations have different effects on mutual alignment errors. Some aberrations influence only the line of sight, while some aberrations influence both the line of sight and the intensity distributions. (c) 2005 Optical Society of America
Resumo:
The very long baseline interferometry result of a superluminal radio source PKS 0420-014 at 5 GHz with Shanghai (China), Urumqi (China), Note (Italy), and HartRAO (South Africa) telescopes is presented. Proper motions of the relativistic jet components in the source are calculated. Based on the Self-Compton emission in a uniform spherical model, the beaming parameters of the source are estimated. The results show that PKS 0420-014 has a high Doppler factor of 9.3, a Lorentz factor of 6.5, and a small angle of 5.5 degrees to the line of sight.
Resumo:
This paper discusses a rigorous treatment of the refractive scintillation of pulsar PSR B0833-45 caused by a two-component interstellar scattering medium. It is assumed that the interstellar scattering medium is composed of a thin screen ISM and an extended interstellar medium. We consider that the scattering of the thin screen concentrates in a thin layer presented by a delta function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with that of the Vela pulsar observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation of the Vela pulsar than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight. The logarithmic slope of the structure function is sensitive to thin screen location and is relatively insensitive to the scattering strength of the thin screen medium. Therefore, the proposed model can be applied to interpret the structure function of flux density observed in pulsar PSR B0833-45. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the Vela supernova remnant. Thus our work provides some insight into the distribution of the scattering along the line of sight to the Vela pulsar.
Resumo:
Neutral winds and electric fields in the ionospheric F layer play important roles in the variations of the ionosphere, and also affect the thermospheric circulation via the close coupling between the ionosphere and the thermosphere. By now, the neutral winds and electric drifts are generally observed with ground-based Fabry-Perot interferometers (FPI) and incoherent scatter radars (ISR), rockets, and satellite-borne instrument. Based on the servo theory, the ionospheric equivalent winds, which include the information of both the neutral winds and electric fields, can be derived from these characteristic parameters observed by ionosondes. This indirect derivation has potential values in climatological researches and space weather forecast. With the data set of the incoherent scatter radar observations at Millstone Hill, USA, from 1976 to 2006, we statistically analyzed the climatological variations of the vertical component of the equivalent winds (VEWs) over Millstone Hill, which are derived from the ionospheric key parameters (the peak electron number density and peak height of the F2 layer, NmF2 and hmF2) on the basis of the servo theory, Liu's method, and measurements from the ion line-of-sight velocity as well. The main results of this analysis are summarized as follows: (1) The values of VEWs over Millstone Hill during nighttime are stronger than in the daytime, and the upward drift dominates most of the day. In 1993, Hagan found that the component of the neutral winds in the magnetic meridion in daytime is weaker than during nighttime under both solar maximum and minimum conditions; he also found that the equatorward winds dominate most of the day. Both results suggest that the thermosphere in Millstone Hill is modulated by the aurorally driven high-latitude circulation cell; that is, during geomagnetic quiet periods, the average auroral activity is strong enough to drive thermospheric circulation equatorward for most of the day at Millstone Hill. Moreover, since ion drag is the strongest during daytime when F region densities are enhanced by photoionization, the wind speeds are smaller during the daytime than in the nighttime. (2) There is equinoctial symmetry in VEWs at Millstone Hill. The amplitudes and phases of VEWs in spring are quite similar to those in autumn. In contrast, the nighttime upward drift in winter is weaker than in summer and the difference becomes more significant with increasing solar activity. This solstice asymmetry indicates that, the aurorally driven circulation in the northern hemisphere at Millstone Hill latitude is weaker in winter due to arctic darkness, because the subsolar point is in the southern hemisphere. (3) The comparison of the VEWs derived from three methods, i.e., the servo theory, Liu's method, and the ISR ion line-of-sight velocity measurements, indicates that the amplitudes and main phase tendencies of these VEWs accord well with each other during nighttime hours. However, the case in the daytime is relatively worse. This daytime discrepancy can be explained in terms of the effects of photochemical processes and the choices of the servo constants. A larger servo constant gives a stronger plasma drift in daytime. Therefore, this study tells how important to choose a suitable constant for deriving VEWs at Millstone Hill.
Resumo:
This dissertation proposes and demonstrates novel smart modules to solve challenging problems in the areas of imaging, communications, and displays. The smartness of the modules is due to their ability to be able to adapt to changes in operating environment and application using programmable devices, specifically, electronically variable focus lenses (ECVFLs) and digital micromirror devices (DMD). The proposed modules include imagers for laser characterization and general purpose imaging which smartly adapt to changes in irradiance, optical wireless communication systems which can adapt to the number of users and to changes in link length, and a smart laser projection display that smartly adjust the pixel size to achieve a high resolution projected image at each screen distance. The first part of the dissertation starts with the proposal of using an ECVFL to create a novel multimode laser beam characterizer for coherent light. This laser beam characterizer uses the ECVFL and a DMD so that no mechanical motion of optical components along the optical axis is required. This reduces the mechanical motion overhead that traditional laser beam characterizers have, making this laser beam characterizer more accurate and reliable. The smart laser beam characterizer is able to account for irradiance fluctuations in the source. Using image processing, the important parameters that describe multimode laser beam propagation have been successfully extracted for a multi-mode laser test source. Specifically, the laser beam analysis parameters measured are the M2 parameter, w0 the minimum beam waist, and zR the Rayleigh range. Next a general purpose incoherent light imager that has a high dynamic range (>100 dB) and automatically adjusts for variations in irradiance in the scene is proposed. Then a data efficient image sensor is demonstrated. The idea of this smart image sensor is to reduce the bandwidth needed for transmitting data from the sensor by only sending the information which is required for the specific application while discarding the unnecessary data. In this case, the imager demonstrated sends only information regarding the boundaries of objects in the image so that after transmission to a remote image viewing location, these boundaries can be used to map out objects in the original image. The second part of the dissertation proposes and demonstrates smart optical communications systems using ECVFLs. This starts with the proposal and demonstration of a zero propagation loss optical wireless link using visible light with experiments covering a 1 to 4 m range. By adjusting the focal length of the ECVFLs for this directed line-of-sight link (LOS) the laser beam propagation parameters are adjusted such that the maximum amount of transmitted optical power is captured by the receiver for each link length. This power budget saving enables a longer achievable link range, a better SNR/BER, or higher power efficiency since more received power means the transmitted power can be reduced. Afterwards, a smart dual mode optical wireless link is proposed and demonstrated using a laser and LED coupled to the ECVFL to provide for the first time features of high bandwidths and wide beam coverage. This optical wireless link combines the capabilities of smart directed LOS link from the previous section with a diffuse optical wireless link, thus achieving high data rates and robustness to blocking. The proposed smart system can switch from LOS mode to Diffuse mode when blocking occurs or operate in both modes simultaneously to accommodate multiple users and operate a high speed link if one of the users requires extra bandwidth. The last part of this section presents the design of fibre optic and free-space optical switches which use ECVFLs to deflect the beams to achieve switching operation. These switching modules can be used in the proposed optical wireless indoor network. The final section of the thesis presents a novel smart laser scanning display. The ECVFL is used to create the smallest beam spot size possible for the system designed at the distance of the screen. The smart laser scanning display increases the spatial resoluti on of the display for any given distance. A basic smart display operation has been tested for red light and a 4X improvement in pixel resolution for the image has been demonstrated.
Resumo:
In this thesis, extensive experiments are firstly conducted to characterize the performance of using the emerging IEEE 802.15.4-2011 ultra wideband (UWB) for indoor localization, and the results demonstrate the accuracy and precision of using time of arrival measurements for ranging applications. A multipath propagation controlling technique is synthesized which considers the relationship between transmit power, transmission range and signal-to-noise ratio. The methodology includes a novel bilateral transmitter output power control algorithm which is demonstrated to be able to stabilize the multipath channel, and enable sub 5cm instant ranging accuracy in line of sight conditions. A fully-coupled architecture is proposed for the localization system using a combination of IEEE 802.15.4-2011 UWB and inertial sensors. This architecture not only implements the position estimation of the object by fusing the UWB and inertial measurements, but enables the nodes in the localization network to mutually share positional and other useful information via the UWB channel. The hybrid system has been demonstrated to be capable of simultaneous local-positioning and remote-tracking of the mobile object. Three fusion algorithms for relative position estimation are proposed, including internal navigation system (INS), INS with UWB ranging correction, and orientation plus ranging. Experimental results show that the INS with UWB correction algorithm achieves an average position accuracy of 0.1883m, and gets 83% and 62% improvements on the accuracy of the INS (1.0994m) and the existing extended Kalman filter tracking algorithm (0.5m), respectively.
Resumo:
Given the importance of occupant behaviour on evacuation efficiency, a new behavioural feature has been implemented into buildingEXODUS. This feature concerns the response of occupants to exit selection and re-direction. This behaviour is not simply pre-determined by the user as part of the initialisation process, but involves the occupant taking decisions based on their previous experiences and the information available to them. This information concerns the occupants prior knowledge of the enclosure and line-of-sight information concerning queues at neighbouring exits. This new feature is demonstrated and reviewed through several examples.
Resumo:
Given the importance of occupant behavior on evacuation efficiency, a new behavioral feature has been developed and implemented into buildingEXODUS. This feature concerns the response of occupants to exit selection and re-direction. This behavior is not simply pre-determined by the user as part of the initialization process, but involves the occupant taking decisions based on their previous experiences and the information available to them. This information concerns the occupants prior knowledge of the enclosure and line-of-sight information concerning queues at neighboring exits. This new feature is demonstrated and reviewed through several examples.
Resumo:
Given the importance of occupant behavior on evacuation efficiency, a new behavioral feature has been implemented into building EXODUS. This feature concerns the response of occupants to exit selection and re-direction, given that the occupant is queuing at an external exit. This behavior is not simply pre-determined by the user as part of the initialization process, but involves the occupant taking decisions based on their previous experiences with the enclosure and the information available to them. This information concerns the occupant's prior knowledge of the enclosure and line-of-sight information concerning queues at neighboring exits. This new feature is demonstrated and reviewed through several examples.
Resumo:
A curved crystal spectrometer in Johann configuration has been implemented on MAST to obtain values for electron temperature, ion temperature and toroidal velocity. The spectrometer is used to examine medium Z impurities in the soft x-ray region by utilising a Silicon (111) crystal, bent using a 4 pin bending jig, and a CCD detector (Deltat=8 ms). Helium-like Argon emissions from 3.94 to 4.00 Angstrom have been examined using a crystal radius of 859.77 mm. The Bragg angle and crystal radius can be adjusted with relative ease. The spectrometer can be scanned toroidally and poloidally to include a radial view which facilitates absolute velocity measurements by assuming radial velocity =0. Doppler shifts of 2.3x10(-5) Angstrom (1.8 kms(-1)) can be measured. The line of sight is shared with a neutral particle analyzer, which enables in situ ion temperature comparisons. Ray tracing has been used for the development of new imaging spectrometers, using spherical/toroidal crystals, planned to be implemented on MAST. (C) 2004 American Institute of Physics.
Resumo:
We have looked for SiO emission as evidence of shocks in the high mass star formation region G34.26+0.15. JCMT, VLA and FCRAO observations show that SiO emission is widespread across the region. The SiO emission highlights a massive, collimated out ow and other regions where stellar winds are interacting with molecular clumps. As in other star forming regions, there is also SiO at ambient velocities which is related to the out ow activity. No strong SiO abundance enhancement was measured in either the out ow or the low velocity gas, though abundances up to 10(-8) are possible if the SiO is locally enhanced in clumps and optically thick. SiO emission is not detected from the hot core itself, indicating either that SiO is not strongly enhanced in the hot core or that column densities in the region where grain mantle evaporation has taken place are low. In line of sight spiral arm clouds, we measure a SiO abundance of 0.4-2 x 10(-10), consistent with previous estimates for quiescent clouds.
Resumo:
The flow of energy through the solar atmosphere and the heating of the Sun's outer regions are still not understood. Here, we report the detection of oscillatory phenomena associated with a large bright-point group that is 430,000 square kilometers in area and located near the solar disk center. Wavelet analysis reveals full-width half-maximum oscillations with periodicities ranging from 126 to 700 seconds originating above the bright point and significance levels exceeding 99%. These oscillations, 2.6 kilometers per second in amplitude, are coupled with chromospheric line-of-sight Doppler velocities with an average blue shift of 23 kilometers per second. A lack of cospatial intensity oscillations and transversal displacements rules out the presence of magneto-acoustic wave modes. The oscillations are a signature of Alfvén waves produced by a torsional twist of ±22 degrees. A phase shift of 180 degrees across the diameter of the bright point suggests that these torsional Alfvén oscillations are induced globally throughout the entire brightening. The energy flux associated with this wave mode is sufficient to heat the solar corona.
Resumo:
High-cadence, multiwavelength optical observations of a solar active region (NOAA AR 10969), obtained with the Swedish Solar Telescope, are presented. Difference imaging of white light continuum data reveals a white-light brightening, 2 minutes in duration, linked to a cotemporal and cospatial C2.0 flare event. The flare kernel observed in the white-light images has a diameter of 300 km, thus rendering it below the resolution limit of most space-based telescopes. Continuum emission is present only during the impulsive stage of the flare, with the effects of chromospheric emission subsequently delayed by approximate to 2 minutes. The localized flare emission peaks at 300% above the quiescent flux. This large, yet tightly confined, increase in emission is only resolvable due to the high spatial resolution of the Swedish Solar Telescope. An investigation of the line-of-sight magnetic field derived from simultaneous MDI data shows that the continuum brightening is located very close to a magnetic polarity inversion line. In addition, an Ha flare ribbon is directed along a region of rapid magnetic energy change, with the footpoints of the ribbon remaining cospatial with the observed white-light brightening throughout the duration of the flare. The observed flare parameters are compared with current observations and theoretical models for M- and X-class events and we determine the observed white-light emission is caused by radiative back-warming. We suggest that the creation of white-light emission is a common feature of all solar flares.
Resumo:
We present a detailed kinematical analysis of the young compact hourglass-shaped planetary nebula Hb 12. We performed optical imaging and long-slit spectroscopy of Hb 12 using the Manchester echelle spectrometer with the 2.1-m San Pedro Mártir telescope. We reveal, for the first time, the presence of end caps (or knots) aligned with the bipolar lobes of the planetary nebula shell in a deep [NII] ?6584 image of Hb 12. We measured from our spectroscopy radial velocities of ~120kms-1 for these knots. We have derived the inclination angle of the hourglass-shaped nebular shell to be ~65° to the line of sight. It has been suggested that Hb 12's central star system is an eclipsing binary which would imply a binary inclination of at least 80°. However, if the central binary has been the major shaping influence on the nebula, then both nebula and binary would be expected to share a common inclination angle. Finally, we report the discovery of high-velocity knots with Hubble-type velocities, close to the core of Hb 12, observed in Ha and oriented in the same direction as the end caps. Very different velocities and kinematical ages were calculated for the outer and inner knots showing that they may originate from different outburst events.