978 resultados para Neural stimulation.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O diagnóstico da hanseníase neural pura baseia-se em dados clínicos e laboratoriais do paciente, incluindo a histopatologia de espécimes de biópsia de nervo e detecção de DNA de Mycobacterium leprae (M. leprae) pelo PCR. Como o exame histopatológico e a técnica PCR podem não ser suficientes para confirmar o diagnóstico, a imunomarcação de lipoarabinomanana (LAM) e/ou Glicolipídio fenólico 1 (PGL1) - componentes de parede celular de M. leprae foi utilizada na primeira etapa deste estudo, na tentativa de detectar qualquer presença vestigial do M. leprae em amostras de nervo sem bacilos. Além disso, sabe-se que a lesão do nervo na hanseníase pode diretamente ser induzida pelo M. leprae nos estágios iniciais da infecção, no entanto, os mecanismos imunomediados adicionam severidade ao comprometimento da função neural em períodos sintomáticos da doença. Este estudo investigou também a expressão imuno-histoquímica de marcadores envolvidos nos mecanismos de patogenicidade do dano ao nervo na hanseníase. Os imunomarcadores selecionados foram: quimiocinas CXCL10, CCL2, CD3, CD4, CD8, CD45RA, CD45RO, CD68, HLA-DR, e metaloproteinases 2 e 9. O estudo foi desenvolvido em espécimes de biópsias congeladas de nervo coletados de pacientes com HNP (n=23 / 6 BAAR+ e 17 BAAR - PCR +) e pacientes diagnosticados com outras neuropatias (n=5) utilizados como controle. Todas as amostras foram criosseccionadas e submetidas à imunoperoxidase. Os resultados iniciais demonstraram que as 6 amostras de nervos BAAR+ são LAM+/PGL1+. Já entre as 17 amostras de nervos BAAR-, 8 são LAM+ e/ou PGL1+. Nas 17 amostras de nervos BAAR-PCR+, apenas 7 tiveram resultados LAM+ e/ou PGL1+. A detecção de imunorreatividade para LAM e PGL1 nas amostras de nervo do grupo HNP contribuiu para a maior eficiência diagnóstica na ausência recursos a diagnósticos moleculares. Os resultados da segunda parte deste estudo mostraram que foram encontradas imunoreatividade para CXCL10, CCL2, MMP2 e MMP9 nos nervos da hanseníase, mas não em amostras de nervos com outras neuropatias. Além disso, essa imunomarcação foi encontrada predominantemente em células de Schwann e em macrófagos da população celular inflamatória nos nervos HNP. Os outros marcadores de ativação imunológica foram encontrados em leucócitos (linfócitos T e macrófagos) do infiltrado inflamatório encontrados nos nervos. A expressão de todos os marcadores, exceto CXCL10, apresentou associação com a fibrose, no entanto, apenas a CCL2, independentemente dos outros imunomarcadores, estava associada a esse excessivo depósito de matriz extracelular. Nenhuma diferença na frequência da imunomarcação foi detectada entre os subgrupos BAAR+ e BAAR-, exceção feita apenas às células CD68+ e HLA-DR+, que apresentaram discreta diferença entre os grupos BAAR + e BAAR- com granuloma epitelioide. A expressão de MMP9 associada com fibrose é consistente com os resultados anteriores do grupo de pesquisa. Estes resultados indicam que as quimiocinas CCL2 e CXCL10 não são determinantes para o estabelecimento das lesões com ou sem bacilos nos em nervo em estágios avançados da doença, entretanto, a CCL2 está associada com o recrutamento de macrófagos e com o desenvolvimento da fibrose do nervo na lesão neural da hanseníase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta Dissertação irá apresentar a utilização de técnicas de controle nãolinear, tais como o controle adaptativo e robusto, de modo a controlar um sistema de Eletroestimulação Funcional desenvolvido pelo laboratório de Engenharia Biomédica da COPPE/UFRJ. Basicamente um Eletroestimulador Funcional (Functional Electrical Stimulation FES) se baseia na estimulação dos nervos motores via eletrodos cutâneos de modo a movimentar (contrair ou distender) os músculos, visando o fortalecimento muscular, a ativação de vias nervosas (reinervação), manutenção da amplitude de movimento, controle de espasticidade muscular, retardo de atrofias e manutenção de tonicidade muscular. O sistema utilizado tem por objetivo movimentar os membros superiores através do estímulo elétrico de modo a atingir ângulos-alvo pré-determinados para a articulação do cotovelo. Devido ao fato de não termos conhecimento pleno do funcionamento neuro-motor humano e do mesmo ser variante no tempo, não-linear, com parâmetros incertos, sujeito a perturbações e completamente diferente para cada indivíduo, se faz necessário o uso de técnicas de controle avançadas na tentativa de se estabilizar e controlar esse tipo de sistema. O objetivo principal é verificar experimentalmente a eficácia dessas técnicas de controle não-linear e adaptativo em comparação às técnicas clássicas, de modo a alcançar um controle mais rápido, robusto e que tenha um desempenho satisfatório. Em face disso, espera-se ampliar o campo de utilização de técnicas de controle adaptativo e robusto, além de outras técnicas de sistemas inteligentes, tais como os algoritmos genéticos, provando que sua aplicação pode ser efetiva no campo de sistemas biológicos e biomédicos, auxiliando assim na melhoria do tratamento de pacientes envolvidos nas pesquisas desenvolvidas no Laboratório de Engenharia Biomédica da COPPE/UFRJ.