866 resultados para Neural networks and clustering
Resumo:
This paper presents a rational approach to the design of a catamaran's hydrofoil applied within a modern context of multidisciplinary optimization. The approach used includes the use of response surfaces represented by neural networks and a distributed programming environment that increases the optimization speed. A rational approach to the problem simplifies the complex optimization model; when combined with the distributed dynamic training used for the response surfaces, this model increases the efficiency of the process. The results achieved using this approach have justified this publication.
Resumo:
High performance video codec is mandatory for multimedia applications such as video-on-demand and video conferencing. Recent research has proposed numerous video coding techniques to meet the requirement in bandwidth, delay, loss and Quality-of-Service (QoS). In this paper, we present our investigations on inter-subband self-similarity within the wavelet-decomposed video frames using neural networks, and study the performance of applying the spatial network model to all video frames over time. The goal of our proposed method is to restore the highest perceptual quality for video transmitted over a highly congested network. Our contributions in this paper are: (1) A new coding model with neural network based, inter-subband redundancy (ISR) prediction for video coding using wavelet (2) The performance of 1D and 2D ISR prediction, including multiple levels of wavelet decompositions. Our result shows a short-term quality enhancement may be obtained using both 1D and 2D ISR prediction.
Resumo:
This study describes the derivation of two new lines of transgenic mice that express Cre recombinase under the control of tyrosinase transcriptional elements. To determine the suitability of the Tyrosinase-Cre transgene for tissue-specific gene ablation studies, a fate map of Cre expression domains was determined using the Z/AP reporter strain. It was shown that Cre-expressing cells contribute to a wide array of neural crest and neuroepithelial-derived lineages. The melanocytes of the harderian gland and eye choroid, sympathetic cephalic ganglia, leptomeninges of the telencephalon, as well as cranial nerves (V), (VII), and (IX) are derived either fully or partly from Cre-expressing cephalic crest. The cells contributing to the cranial nerves were the first to exhibit Cre expression at E10.5 as they were migrating into the branchial arches. The melanocytes, chromaffin cells of the adrenal medulla, and dorsal root ganglia are derived from trunk neural crest that either express Cre or were derived from Cre-expressing precursors. An array of brain tissue including the basal forebrain, hippocampus, olfactory bulb, and the granule cell layer of the lateral cerebellum, as well as the retinal pigmented epithelium and glia of the optic nerve originate from Cre-expressing neuroepithelial cells. (C) 2003 Wiley-Liss, Inc.
Resumo:
Exposure to a novel environment triggers the response of several brain areas that regulate emotional behaviors. Here, we studied theta oscillations within the hippocampus (HPC)-amygdala (AMY)-medial prefrontal cortex (mPFC) network in exploration of a novel environment and subsequent familiarization through repeated exposures to that same environment; in addition, we assessed how concomitant stress exposure could disrupt this activity and impair both behavioral processes. Local field potentials were simultaneously recorded from dorsal and ventral hippocampus (dHPC and vHPC respectively), basolateral amygdala (BLA) and mPFC in freely behaving rats while they were exposed to a novel environment, then repeatedly re-exposed over the course of 3 weeks to that same environment and, finally, on re-exposure to a novel unfamiliar environment. A longitudinal analysis of theta activity within this circuit revealed a reduction of vHPC and BLA theta power and vHPC-BLA theta coherence through familiarization which was correlated with a return to normal exploratory behavior in control rats. In contrast, a persistent over-activation of the same brain regions was observed in stressed rats that displayed impairments in novel exploration and familiarization processes. Importantly, we show that stress also affected intra-hippocampal synchrony and heightened the coherence between vHPC and BLA. In summary, we demonstrate that modulatory theta activity in the aforementioned circuit, namely in the vHPC and BLA, is correlated with the expression of anxiety in novelty-induced exploration and familiarization in both normal and pathological conditions.
Resumo:
A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.
Resumo:
A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.
Resumo:
This study demonstrates and applies a social network methodology for studying the dynamics of hierarchies in organizations. Social network (blockmodel) analysis of verbal networks in four hospitals contrasted hierarchical and structurally equivalent partitions of the sociomatrices of frequent ties and perceptions of organizational culture. It was found that the verbal networks in these organizations follow a center periphery pattern rather than a hierarchical logic and that perceptions of culture vary more by verbal network than by formal hierarchy. The perceptions of culture of central groups in one organization are much like those of peripheral groups in another. In all four hospitals, structurally equivalent social networks are more important in predicting subcultures than are hierarchical groupings and hierarchy has a limited impact on the development of verbal networks. These findings suggest the value of an amoeba rather than a pyramid metaphor in interpreting the cultures and relational structures of organizations.
Resumo:
As vias de comunicação são indispensáveis para o desenvolvimento de uma nação, económica e socialmente. Num mundo globalizado, onde tudo deve chegar ao seu destino no menor espaço de tempo, as vias de comunicação assumem um papel vital. Assim, torna-se essencial construir e manter uma rede de transportes eficiente. Apesar de não ser o método mais eficiente, o transporte rodoviário é muitas vezes o mais económico e possibilita o transporte porta-a-porta, sendo em muitos casos o único meio de transporte possível. Por estas razões, o modo rodoviário tem uma quota significativa no mercado dos transportes, seja de passageiros ou mercadorias, tornando-o extremamente importante na rede de transportes de um país. Os países europeus fizeram um grande investimento na criação de extensas redes de estradas, cobrindo quase todo o seu território. Neste momento, começa-se a atingir o ponto onde a principal preocu+ação das entidades gestoras de estradas deixa de ser a construção de novas vias, passando a focar-se na necessidade de manutenção e conservação das vias existentes. Os pavimentos rodoviários, como todas as outras construções, requerem manutenção de forma a garantir bons níveis de serviço com qualidade, conforto e segurança. Devido aos custos inerentes às operações de manutenção de pavimentos, estas devem rigorosamente e com base em critérios científicos bem definidos. Assim, pretende-se evitar intervenções desnecessárias, mas também impedir que os danos se tornem irreparáveis e economicamente prejudiciais, com repercussões na segurança dos utilizadores. Para se estimar a vida útil de um pavimento é essencial realizar primeiro a caracterização estrutural do mesmo. Para isso, torna-se necessário conhecer o tipo de estrutura de um pavimento, nomeadamente a espessura e o módulo de elasticidade constituintes. A utilização de métodos de ensaio não destrutivos é cada vez mais reconhecida como uma forma eficaz para obter informações sobre o comportamento estrutural de pavimentos. Para efectuar estes ensaios, existem vários equipamentos. No entanto, dois deles, o Deflectómetro de Impacto e o Radar de Prospecção, têm demonstrado ser particularmente eficientes para avaliação da capacidade de carga de um pavimento, sendo estes equipamentos utilizados no âmbito deste estudo. Assim, para realização de ensaios de carga em pavimentos, o equipamento Deflectómetro de Impacto tem sido utilizado com sucesso para medir as deflexões à superfície de um pavimento em pontos pré-determinados quando sujeito a uma carga normalizada de forma a simular o efeito da passagem da roda de um camião. Complementarmente, para a obtenção de informações contínuas sobre a estrutura de um pavimento, o equipamento Radar de Prospecção permite conhecer o número de camadas e as suas espessuras através da utilização de ondas electromagnéticas. Os dados proporcionam, quando usados em conjunto com a realização de sondagens à rotação e poços em alguns locais, permitem uma caracterização mais precisa da condição estrutural de um pavimento e o estabelecimento de modelos de resposta, no caso de pavimentos existentes. Por outro lado, o processamento dos dados obtidos durante os ensaios “in situ” revela-se uma tarefa morosa e complexa. Actualmente, utilizando as espessuras das camadas do pavimento, os módulos de elasticidade das camadas são calculados através da “retro-análise” da bacia de deflexões medida nos ensaios de carga. Este método é iterativo, sendo que um engenheiro experiente testa várias estruturas diferentes de pavimento, até se obter uma estrutura cuja resposta seja o mais próximo possível da obtida durante os ensaios “in Situ”. Esta tarefa revela-se muito dependente da experiência do engenheiro, uma vez que as estruturas de pavimento a serem testadas maioritariamente do seu raciocínio. Outra desvantagem deste método é o facto de apresentar soluções múltiplas, dado que diferentes estruturas podem apresentar modelos de resposta iguais. A solução aceite é, muitas vezes, a que se julga mais provável, baseando-se novamente no raciocínio e experiência do engenheiro. A solução para o problema da enorme quantidade de dados a processar e das múltiplas soluções possíveis poderá ser a utilização de Redes Neuronais Artificiais (RNA) para auxiliar esta tarefa. As redes neuronais são elementos computacionais virtuais, cujo funcionamento é inspirado na forma como os sistemas nervosos biológicos, como o cérebro, processam a informação. Estes elementos são compostos por uma série de camadas, que por sua vez são compostas por neurónios. Durante a transmissão da informação entre neurónios, esta é modificada pela aplicação de um coeficiente, denominado “peso”. As redes neuronais apresentam uma habilidade muito útil, uma vez que são capazes de mapear uma função sem conhecer a sua fórmula matemática. Esta habilidade é utilizada em vários campos científicos como o reconhecimento de padrões, classificação ou compactação de dados. De forma a possibilitar o uso desta característica, a rede deverá ser devidamente “treinada” antes, processo realizado através da introdução de dois conjuntos de dados: os valores de entrada e os valores de saída pretendidos. Através de um processo cíclico de propagação da informação através das ligações entre neurónios, as redes ajustam-se gradualmente, apresentando melhores resultados. Apesar de existirem vários tipos de redes, as que aparentam ser as mais aptas para esta tarefa são as redes de retro-propagação. Estas possuem uma característica importante, nomeadamente o treino denominado “treino supervisionado”. Devido a este método de treino, as redes funcionam dentro da gama de variação dos dados fornecidos para o “treino” e, consequentemente, os resultados calculados também se encontram dentro da mesma gama, impedindo o aparecimento de soluções matemáticas com impossibilidade prática. De forma a tornar esta tarefa ainda mais simples, foi desenvolvido um programa de computador, NNPav, utilizando as RNA como parte integrante do seu processo de cálculo. O objectivo é tornar o processo de “retro-análise” totalmente automático e prevenir erros induzidos pela falta de experiência do utilizador. De forma a expandir ainda mais as funcionalidades do programa, foi implementado um processo de cálculo que realiza uma estimativa da capacidade de carga e da vida útil restante do pavimento, recorrendo a dois critérios de ruína. Estes critérios são normalmente utilizados no dimensionamento de pavimentos, de forma a prevenir o fendilhamento por fadiga e as deformações permanentes. Desta forma, o programa criado permite a estimativa da vida útil restante de um pavimento de forma eficiente, directamente a partir das deflexões e espessuras das camadas, medidas nos ensaios “in situ”. Todos os passos da caracterização estrutural do pavimento são efectuados pelo NNPav, seja recorrendo à utilização de redes neuronais ou a processos de cálculo matemático, incluindo a correcção do módulo de elasticidade da camada de misturas betuminosas para a temperatura de projecto e considerando as características de tráfego e taxas de crescimento do mesmo. Os testes efectuados às redes neuronais revelaram que foram alcançados resultados satisfatórios. Os níveis de erros na utilização de redes neuronais são semelhantes aos obtidos usando modelos de camadas linear-elásticas, excepto para o cálculo da vida útil com base num dos critérios, onde os erros obtidos foram mais altos. No entanto, este processo revela-se bastante mais rápido e possibilita o processamento dos dados por pessoal com menos experiência. Ao mesmo tempo, foi assegurado que nos ficheiros de resultados é possível analisar todos os dados calculados pelo programa, em várias fases de processamento de forma a permitir a análise detalhada dos mesmos. A possibilidade de estimar a capacidade de carga e a vida útil restante de um pavimento, contempladas no programa desenvolvido, representam também ferramentas importantes. Basicamente, o NNPav permite uma análise estrutural completa de um pavimento, estimando a sua vida útil com base nos ensaios de campo realizados pelo Deflectómetro de Impacto e pelo Radar de Prospecção, num único passo. Complementarmente, foi ainda desenvolvido e implementado no NNPav um módulo destinado ao dimensionamento de pavimentos novos. Este módulo permite que, dado um conjunto de estruturas de pavimento possíveis, seja estimada a capacidade de carga e a vida útil daquele pavimento. Este facto permite a análise de uma grande quantidade de estruturas de pavimento, e a fácil comparação dos resultados no ficheiro exportado. Apesar dos resultados obtidos neste trabalho serem bastante satisfatórios, os desenvolvimentos futuros na aplicação de Redes Neuronais na avaliação de pavimentos são ainda mais promissores. Uma vez que este trabalho foi limitado a uma moldura temporal inerente a um trabalho académico, a possibilidade de melhorar ainda mais a resposta das RNA fica em aberto. Apesar dos vários testes realizados às redes, de forma a obter as arquitecturas que apresentassem melhores resultados, as arquitecturas possíveis são virtualmente ilimitadas e pode ser uma área a aprofundar. As funcionalidades implementadas no programa foram as possíveis, dentro da moldura temporal referida, mas existem muitas funcionalidades a serem adicinadas ou expandidas, aumentando a funcionalidade do programa e a sua produtividade. Uma vez que esta é uma ferramenta que pode ser aplicada ao nível de gestão de redes rodoviárias, seria necessário estudar e desenvolver redes similares de forma a avaliar outros tipos de estruturas de pavimentos. Como conclusão final, apesar dos vários aspectos que podem, e devem ser melhorados, o programa desenvolvido provou ser uma ferramenta bastante útil e eficiente na avaliação estrutural de pavimentos com base em métodos de ensaio não destrutivos.
Resumo:
Mestrado em Engenharia Informática
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Radio link quality estimation is essential for protocols and mechanisms such as routing, mobility management and localization, particularly for low-power wireless networks such as wireless sensor networks. Commodity Link Quality Estimators (LQEs), e.g. PRR, RNP, ETX, four-bit and RSSI, can only provide a partial characterization of links as they ignore several link properties such as channel quality and stability. In this paper, we propose F-LQE (Fuzzy Link Quality Estimator, a holistic metric that estimates link quality on the basis of four link quality properties—packet delivery, asymmetry, stability, and channel quality—that are expressed and combined using Fuzzy Logic. We demonstrate through an extensive experimental analysis that F-LQE is more reliable than existing estimators (e.g., PRR, WMEWMA, ETX, RNP, and four-bit) as it provides a finer grain link classification. It is also more stable as it has lower coefficient of variation of link estimates. Importantly, we evaluate the impact of F-LQE on the performance of tree routing, specifically the CTP (Collection Tree Protocol). For this purpose, we adapted F-LQE to build a new routing metric for CTP, which we dubbed as F-LQE/RM. Extensive experimental results obtained with state-of-the-art widely used test-beds show that F-LQE/RM improves significantly CTP routing performance over four-bit (the default LQE of CTP) and ETX (another popular LQE). F-LQE/RM improves the end-to-end packet delivery by up to 16%, reduces the number of packet retransmissions by up to 32%, reduces the Hop count by up to 4%, and improves the topology stability by up to 47%.