948 resultados para Neural algorithm
Resumo:
In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.
Resumo:
This article aims to apply the concepts associated with artificial neural networks (ANN) in the control of an autonomous robot system that is intended to be used in competitions of robots. The robot was tested in several arbitrary paths in order to verify its effectiveness. The results show that the robot performed the tasks with success. Moreover, in the case of arbitrary paths the ANN control outperforms other methodologies, such as fuzzy logic control (FLC).
Resumo:
OBJECTIVES: 1) To determine trends in prevalence of neural tube defects and the impact of therapeutic abortion. 2) To review perinatal management of spina bifida. DESIGN: All spontaneous and therapeutic abortions, still births and live births affected by neural tube defects registered in Alfredo da Costa Maternity in Lisbon, from 1983 to 1992, were retrospectively analysed. RESULTS: Eighty-two cases with neural tube defects are reported and myelomeningocele and anencephaly++ were the most frequent ones. Total prevalence for all defects was 0.78:1000 births with a small upward trend during the last two years. Birth prevalence was 0.6:1000, with a clear downward trend, due to therapeutic abortion. Prenatal diagnosis improved significantly, from 9% of all defects detected in 1983-87 to 77.5% in 1988-92. Since 1989, all cases of anencephaly were detected before birth. Most cases of spina bifida were vaginally delivered, and elective cesarean section occurred in 4. Early closure of the defect was undertaken in 87.6% of the newborns with open spina bifida. CONCLUSION: While total prevalence of neural tube defects remained stable, with only a small upward trend, prenatal diagnosis and therapeutic abortion resulted in a 56.3% fall in birth prevalence. Optimal management of open spina bifida demands a multidisciplinary team with an individual program for each case.
Resumo:
Depression is associated with decreased serotonin metabolism and functioning in the central nervous system, evidenced by both animal models of depression and clinical patient studies. Depression is also accompanied by decreased hippocampal neurogenesis in diverse animal models. Neurogenesis is mainly defined in dentate gyrus of hippocampus as well as subventricular zone. Moreover, hypothalamus, amygdala, olfactory tubercle, and piriform cortex are reported with evidences of adult neurogenesis. Physical exercise is found to modulate adult neurogenesis significantly, and results in mood improvement. The cellular mechanism such as adult neurogenesis upregulation was considered as one major mood regulator following exercise. The recent advances in molecular mechanisms underlying exercise-regulated neurogenesis have widen our understanding in brain plasticity in physiological and pathological conditions, and therefore better management of different psychiatric disorders.
Resumo:
Microbiota is a set of microorganisms resident in gut ecosystem that reacts to psychological stressful stimuli, and is involved in depressed or anxious status in both animals and human being. Interestingly, a series of studies have shown the effects of physical exercise on gut microbiota dynamics, suggesting that gut microbiota regulation might act as one mediator for the effects of exercise on the brain. Recent studies found that gut microbiota dynamics are also regulated by metabolism changes, such as through physical exercise or diet change. Interestingly, physical exercise modulates different population of gut bacteria in compared to food restriction or rich diet, and alleviates gut syndromes to toxin intake. Gut microbiota could as well contribute to the beneficial effects of exercise on cognition and emotion, either directly through serotonin signaling or indirectly by modulating metabolism and exercise performance.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
The purpose of this work is to present an algorithm to solve nonlinear constrained optimization problems, using the filter method with the inexact restoration (IR) approach. In the IR approach two independent phases are performed in each iteration—the feasibility and the optimality phases. The first one directs the iterative process into the feasible region, i.e. finds one point with less constraints violation. The optimality phase starts from this point and its goal is to optimize the objective function into the satisfied constraints space. To evaluate the solution approximations in each iteration a scheme based on the filter method is used in both phases of the algorithm. This method replaces the merit functions that are based on penalty schemes, avoiding the related difficulties such as the penalty parameter estimation and the non-differentiability of some of them. The filter method is implemented in the context of the line search globalization technique. A set of more than two hundred AMPL test problems is solved. The algorithm developed is compared with LOQO and NPSOL software packages.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
BACKGROUND: Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. METHOD: The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. RESULTS: The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Trabalho de Projeto apresentado como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Classical serological screening assays for Chagas' disease are time consuming and subjective. The objective of the present work is to evaluate the enzyme immuno-assay (ELISA) methodology and to propose an algorithm for blood banks to be applied to Chagas' disease. Seven thousand, nine hundred and ninety nine blood donor samples were screened by both reverse passive hemagglutination (RPHA) and indirect immunofluorescence assay (IFA). Samples reactive on RPHA and/or IFA were submitted to supplementary RPHA, IFA and complement fixation (CFA) tests. This strategy allowed us to create a panel of 60 samples to evaluate the ELISA methodology from 3 different manufacturers. The sensitivity of the screening by IFA and the 3 different ELISA's was 100%. The specificity was better on ELISA methodology. For Chagas disease, ELISA seems to be the best test for blood donor screening, because it showed high sensitivity and specificity, it is not subjective and can be automated. Therefore, it was possible to propose an algorithm to screen samples and confirm donor results at the blood bank.