869 resultados para Neonatal thermoregulation
Resumo:
In this study, the hypothesis was tested that the size of gastrointestinal tract (GIT) mucosal components and rates of epithelial cell proliferation and apoptosis change with increasing age. The aims were to quantitatively examine GIT histomorphology and to determine mucosal epithelial cell proliferation and apoptosis rates in neonatal (<48 h old) and adult (8 to 11.5 yr old) dogs. Morphometrical analyses were performed by light microscopy with a video-based, computer-linked system. Cell proliferation and apoptosis of the GIT epithelium were evaluated by counting the number of Ki-67 and caspase-3-positive cells, respectively, using immunohistochemical methods. Thickness of mucosal, glandular, subglandular, submucosal and muscular layers, crypt depths, villus heights, and villus widths were consistently greater (P < 0.05 to P < 0.001), whereas villus height/crypt depth ratios were smaller (P < 0.001) in adult than in neonatal dogs. The number of Ki-67-positive cells in stomach, small intestine, and colon crypts, but not in villi, was consistently greater (P < 0.01) in neonatal than in adult dogs. In contrast, the number of caspase-3-positive cells in crypts of the stomach, small intestine, and colon and in villi was not significantly influenced by age. In conclusion, canine GIT mucosal morphology and epithelial cell proliferation rates, but not apoptosis rates, change markedly from birth until adulthood is reached.
Resumo:
Studies using cultured cells allow one to dissect complex cellular mechanisms in greater detail than when studying living organisms alone. However, before cultured cells can deliver meaningful results they must accurately represent the in vivo situation. Over the last three to four decades considerable effort has been devoted to the development of culture media which improve in vitro growth and modeling accuracy. In contrast to earlier large-scale, non-specific screening of factors, in recent years the development of such media has relied increasingly on a deeper understanding of the cell's biology and the selection of growth factors to specifically activate known biological processes. These new media now enable equal or better cell isolation and growth, using significantly simpler and less labor-intensive methodologies. Here we describe a simple method to isolate and cultivate epidermal keratinocytes from embryonic or neonatal skin on uncoated plastic using a medium specifically designed to retain epidermal keratinocyte progenitors in an undifferentiated state for improved isolation and proliferation and an alternative medium to support terminal differentiation.
Resumo:
Preconditioning of neonatal mice with nonlethal hypoxia (HPC) protects the brain from hypoxic-ischemic (HI) injury. Overexpression of human glutathione peroxidase 1 (GPx1), which normally protects the developing murine brain from HI injury, reverses HPC protection, suggesting that a certain threshold of hydrogen peroxide concentration is required for activation of HPC signaling.
Resumo:
This case describes evidence for a Shiga toxin-producing Escherichia coli (STEC) O146:H28 infection leading to hemolytic uremic syndrome in a neonate. STEC O146:H28 was linked hitherto with asymptomatic carriage in humans. Based on strain characteristics and genotyping data, the mother is a healthy carrier who transmitted the STEC during delivery. STEC strains belonging to the low-pathogenic STEC group must also be considered in the workup of neonatal hemolytic uremic syndrome.
Resumo:
There is increasing evidence of the adverse impact of prenatal exposure to air pollution. This is of particular interest, as exposure during pregnancy--a crucial time span of important biological development--may have long-term implications. The aims of this review are to show current epidemiological evidence of known effects of prenatal exposure to air pollution and present possible mechanisms behind this process. Harmful effects of exposure to air pollution during pregnancy have been shown for different birth outcomes: higher infant mortality, lower birth weight, impaired lung development, increased later respiratory morbidity, and early alterations in immune development. Although results on lower birth weight are somewhat controversial, evidence for higher infant mortality is consistent in studies published worldwide. Possible mechanisms include direct toxicity of particles due to particle translocation across tissue barriers or particle penetration across cellular membranes. The induction of specific processes or interaction with immune cells in either the pregnant mother or the fetus may be possible consequences. Indirect effects could be oxidative stress and inflammation with consequent hemodynamic alterations resulting in decreased placental blood flow and reduced transfer of nutrients to the fetus. The early developmental phase of pregnancy is thought to be very important in determining long-term growth and overall health. So-called "tracking" of somatic growth and lung function is believed to have a huge impact on long-term morbidity, especially from a public health perspective. This is particularly important in areas with high levels of outdoor pollution, where it is practically impossible for an individual to avoid exposure. Especially in these areas, good evidence for the association between prenatal exposure to air pollution and infant mortality exists, clearly indicating the need for more stringent measures to reduce exposure to air pollution.
Resumo:
Early-onset sepsis (EOS) is one of the main causes for the admission of newborns to the neonatal intensive care unit. However, traditional infection markers are poor diagnostic markers of EOS. Pancreatic stone protein (PSP) is a promising sepsis marker in adults. The aim of this study was to investigate whether determining PSP improves the diagnosis of EOS in comparison with other infection markers.
Resumo:
Abstract Background: Aerosol therapy in preterm infants is challenging, as a very small proportion of the drug deposits in the lungs. Aim: Our aim was to compare efficiency of standard devices with newer, more efficient aerosol delivery devices. Methods: Using salbutamol as a drug marker, we studied two prototypes of the investigational eFlow(®) nebulizer for babies (PARI Pharma GmbH), a jet nebulizer (Intersurgical(®) Cirrus(®)), and a pressurized metered dose inhaler (pMDI; GSK) with a detergent-coated holding chamber (AeroChamber(®) MV) in the premature infant nose throat-model (PrINT-model) of a 32-week preterm infant (1,750 g). A filter or an impactor was placed below the infant model's "trachea" to capture the drug dose or particle size, respectively, that would have been deposited in the lung. Results: Lung dose (percentage of nominal dose) was 1.5%, 6.8%, and 18.0-20.6% for the jet nebulizer, pMDI-holding chamber, and investigational eFlow nebulizers, respectively (p<0.001). Jet nebulizer residue was 69.4% and 10.7-13.9% for the investigational eFlow nebulizers (p<0.001). Adding an elbow extension between the eFlow and the model significantly lowered lung dose (p<0.001). A breathing pattern with lower tidal volume decreased deposition in the PrINT-model and device residue (p<0.05), but did not decrease lung dose. Conclusions: In a model for infant aerosol inhalation, we confirmed low lung dose using jet nebulizers and pMDI-holding chambers, whereas newer, more specialized vibrating membrane devices, designed specifically for use in preterm infants, deliver up to 20 times more drug to the infant's lung.
Resumo:
Atrial tissue expresses both connexin 40 (Cx40) and 43 (Cx43) proteins. To assess the relative roles of Cx40 and Cx43 in atrial electrical propagation, we synthesized cultured strands of atrial myocytes derived from mice with genetic deficiency in Cx40 or Cx43 expression and measured propagation velocity (PV) by high-resolution optical mapping of voltage-sensitive dye fluorescence. The amount of Cx40 and/or Cx43 in gap junctions was measured by immunohistochemistry and total or sarcolemmal Cx43 or Cx40 protein by immunoblotting. Progressive genetic reduction in Cx43 expression decreased PV from 34+/-6 cm/sec in Cx43(+/+) to 30+/-8 cm/sec in Cx43(+/-) and 19+/-11 cm/sec in Cx43(-/-) cultures. Concomitantly, the cell area occupied by Cx40 immunosignal in gap junctions decreased from 2.0+/-1.6% in Cx43(+/+) to 1.7+/-0.5% in Cx43(+/-) and 1.0+/-0.2% in Cx43(-/-) strands. In contrast, progressive genetic reduction in Cx40 expression increased PV from 30+/-2 cm/sec in Cx40(+/+) to 40+/-7 cm/sec in Cx40(+/-) and 45+/-10 cm/sec in Cx40(-/-) cultures. Concomitantly, the cell area occupied by Cx43 immunosignal in gap junctions increased from 1.2+/-0.9% in Cx40(+/+) to 2.8+/-1.4% in Cx40(+/-) and 3.1+/-0.6% in Cx40(-/-) cultures. In accordance with the immunostaining results, immunoblots of the Triton X-100-insoluble fraction revealed an increase of Cx43 in gap junctions in extracts from Cx40-ablated atria, whereas total cellular Cx43 remained unchanged. Our results suggest that the relative abundance of Cx43 and Cx40 is an important determinant of atrial impulse propagation in neonatal hearts, whereby dominance of Cx40 decreases and dominance of Cx43 increases local propagation velocity.
Resumo:
Rates of protein synthesis (PS) and turnover are more rapid during the neonatal period than during any other stage of postnatal life. Vitamin A and lactoferrin (Lf) can stimulate PS in neonates. However, newborn calves are vitamin A deficient and have a low Lf status, but plasma vitamin A and Lf levels increase rapidly after ingestion of colostrum. Neonatal calves (n = 6 per group) were fed colostrum or a milk-based formula without or with vitamin A, Lf, or vitamin A plus Lf to study PS in the jejunum and liver. l-[(13)C]Valine was intravenously administered to determine isotopic enrichment of free (nonprotein-bound) Val (AP(Free)) in the protein precursor pool, atom percentage excess (APE) of protein-bound Val, fractional protein synthesis rate (FSR) in the jejunum and liver, and isotopic enrichment of Val in plasma (APE(Pla)) and in the CO(2) of exhaled air (APE(Ex)). The APE, AP(Free), and FSR in the jejunum and liver did not differ significantly among groups. The APE(Ex) increased, whereas APE(Pla) decreased over time, but there were no group differences. Correlations were calculated between FSR(Jej) and histomorphometrical and histochemical data of the jejunum, and between FSR(Liv) and blood metabolites. There were negative correlations between FSR(Liv) and plasma albumin concentrations and between FSR(Jej) and the ratio of villus height:crypt depth, and there was a positive correlation between FSR(Jej) and small intestinal cell proliferation in crypts. Hence, there were no effects of vitamin A and Lf and no interactions between vitamin A and Lf on intestinal and hepatic PS. However, FSR(Jej) was correlated with histomorphometrical traits of the jejunum and FSR(Liv) was correlated with plasma albumin concentrations.
Resumo:
The gastrointestinal tract of neonatal calves is relatively mature but still requires morphological and functional changes. The intake of colostrum with its nutrient and non-nutrient components exerts marked effects on gastrointestinal development and function. Colostrum intake provides immunoprotection (passive immunity by immunoglobulins) and is essential for survival of neonates of most species. Furthermore, there are important transient as well as long-lasting systemic effects on the nutritional status, on metabolism, and on various endocrine systems due to intake of nutrient and non-nutrient colostral components that contribute to survival in the stressful postnatal period. Colostrum is much more than just a supplier of immunoglobulins.
Resumo:
Colostrum feeding and glucocorticoid administration affect glucose metabolism and insulin release in calves. We have tested the hypothesis that dexamethasone as well as colostrum feeding influence insulin-dependent glucose metabolism in neonatal calves using the euglycemic-hyperinsulinemic clamp technique. Newborn calves were fed either colostrum or a milk-based formula (n=14 per group) and in each feeding group, half of the calves were treated with dexamethasone (30 microg/[kg body weight per day]). Preprandial blood samples were taken on days 1, 2, and 4. On day 5, insulin was infused for 3h and plasma glucose concentrations were kept at 5 mmol/L+/-10%. Clamps were combined with [(13)C]-bicarbonate and [6,6-(2)H]-glucose infusions for 5.5h (i.e., from -150 to 180 min, relative to insulin infusion) to determine glucose turnover, glucose appearance rate (Ra), endogenous glucose production (eGP), and gluconeogenesis before and at the end of the clamp. After the clamp liver biopsies were taken to measure mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate carboxylase (PC). Dexamethasone increased plasma glucose, insulin, and glucagon concentrations in the pre-clamp period thus necessitating a reduction in the rate of glucose infusion to maintain euglycemia during the clamp. Glucose turnover and Ra increased during the clamp and were lower at the end of the clamp in dexamethasone-treated calves. Dexamethasone treatment did not affect basal gluconeogenesis or eGP. At the end of the clamp, dexamethasone reduced eGP and PC mRNA levels, whereas mitochondrial PEPCK mRNA levels increased. In conclusion, insulin increased glucose turnover and dexamethasone impaired insulin-dependent glucose metabolism, and this was independent of different feeding.
Resumo:
BACKGROUND: Existing guidelines recommend different strategies to prevent early-onset neonatal GBS sepsis. In 1997, using our own data on incidence and risk factors, we established a new prevention strategy which includes GBS screening at 36 weeks' gestation and intrapartum antibiotic prophylaxis (IAP) in women with positive or unknown GBS colonization with at least one risk factor. The present study evaluates the efficacy of the new prevention strategy. METHODS: Retrospective study of the incidence of early-onset GBS sepsis among all live births at the University Women's Hospital Basel between 1997 and 2002. Additional analysis of delivery and post partum period of all GBS sepsis cases, including GBS screening, risk factors during labor (prematurity, rupture of membranes (ROM) <12 h, intrapartum signs of infection), and IAP. Comparison of this group's characteristics G2 (9,385 live births, using the new strategy) with the previous group, G1 (1984-1993, 16,126 live births, without GBS screening or routine IAP) was performed. RESULTS: The incidence of early-onset GBS sepsis was reduced from 1/1000 (G1) to 0.53/1000 (G2). We observed a significant reduction of overall intrapartum risk factors in cases of GBS sepsis. CONCLUSION: This study suggests that our new prevention strategy is effective in reducing the incidence of early-onset GBS sepsis in neonates. In comparison, implementation of the CDC's prevention strategy might have prevented 2 additional cases in 9385 live births. However, this would have required treating a much larger number of pregnant women with IAP with consequential increasing costs, side effects and complications.