981 resultados para Natural interactions
Resumo:
Next generation screens of diverse dimensions such as the Pebble e-paper watch, Google’s Project Glass, Microsoft’s Kinect and IllumiRoom, and large-scale multi-touch screen surface areas, increasingly saturate and diversify the urban mediascape. This paper seeks to contribute to media architecture and interaction design theory by starting to critically examine how these different screen formats are creating a ubiquitous screen mediascape across the city. We introduce next generation personal, domestic, and public screens. The paper critically challenges conventional dichotomies such as local / global, online / offline, private / public, large / small, mobile / static, that have been created in the past to describe some of the qualities and characteristics of interfaces and their usage. More and more scholars recognise that the black and white nature of these dichotomies does not adequately represent the fluid and agile capabilities of many new screen interfaces. With this paper, we hope to illustrate the more nuanced ‘trans-scalar’ qualities of these new urban interactions, that is, ways in which they provide a range functionality, without being locked into either end of a scale.
Resumo:
Laminar two-dimensional natural convection boundary-layer flow of non-Newtonian fluids along an isothermal horizontal circular cylinder has been studied using a modified power-law viscosity model. In this model, there are no unrealistic limits of zero or infinite viscosity. Therefore, the boundary-layer equations can be solved numerically by using marching order implicit finite difference method with double sweep technique. Numerical results are presented for the case of shear-thinning as well as shear thickening fluids in terms of the fluid velocity and temperature distributions, shear stresses and rate of heat transfer in terms of the local skin-friction and local Nusselt number respectively.
Resumo:
The study presented here applies the highly parameterised semi-distributed U.S. Department of Agriculture Soil and Water Assessment Tool (SWAT) to an Australian subtropical catchment. SWAT has been applied to numerous catchments worldwide and is considered to be a useful tool that is under ongoing development with contributions coming from different research groups in different parts of the world. In a preliminary run the SWAT model application for the Elimbah Creek catchment has estimated water yield for the catchment and has quantified the different sources. For the modelling period of April 1999 to September 2009 the results show that the main sources of water in Elimbah Creek are total surface runoff and lateral flow (65%). Base-flow contributes 36% to the total runoff. On a seasonal basis modelling results show a shift in the source of water contributing to Elimbah Creek from surface runoff and lateral flow during intense summer storms to base-flow conditions during dry months. Further calibration and validation of these results will confirm that SWAT provides an alternative to Australian water balance models.
Resumo:
Fluid Infrastructure: Landscape Architecture Exhibition: This exhibition showcases the work of 4th Year undergraduate landscape architecture students in response to the 2011 Queensland floods through five installations: Systima Fluid Flux Flex Fluid Connectivity The Floods Verge Fluid Evolution The focus of these installations is the post-flood conditions of Brisbane’s riverside public infrastructure, within a scenario of flood as a normalised event. It recognises that within this scenario, parts of this city cannot be described as definitively ‘land’ or ‘water,’ but are best described as ‘fluid terrains’(Mathur, A. and Da Cunha, D. 2006). The landscape design propositions within the five installations include public transport diversification (RiverRats) schemes, greenspace elevations, ephemeral gardens and evolving landscapes, creative interpretation and warning devices and systems. These propositions do not resist fluid conditions, but work with them to propose a more resilient urban river landscape than Brisbane currently has. This QUT exhibition was developed as part of the 2011 Flood of Ideas Project (http://www.floodofideas.org.au) in partnership with Healthy Waterways (Water by Design), State Library of Queensland (The Edge), Brisbane City Council, Australian Institute of Architects, University of Queensland, Green Cross Australia, Stormwater Industry Association.
Resumo:
Selective separation of nitrogen (N2) from methane (CH4) is highly significant in natural gas purification, and it is very challenging to achieve this because of their nearly identical size (the molecular diameters of N2 and CH4 are 3.64 Å and 3.80 Å, respectively). Here we theoretically study the adsorption of N2 and CH4 on B12 cluster and solid boron surfaces a-B12 and c-B28. Our results show that these electron-deficiency boron materials have higher selectivity in adsorbing and capturing N2 than CH4, which provides very useful information for experimentally exploiting boron materials for natural gas purification.
Resumo:
While scientists continue to explore the level of climate change impact to new weather patterns and our environment in general, there have been some devastating natural disasters worldwide in the last two decades. Indeed natural disasters are becoming a major concern in our society. Yet in many previous examples, our reconstruction efforts only focused on providing short-term necessities. How to develop resilience in the long run is now a highlight for research and industry practice. This paper introduces a research project aimed at exploring the relationship between resilience building and sustainability in order to identify key factors during reconstruction efforts. From extensive literature study, the authors considered the inherent linkage between the two issues as evidenced from past research. They found that sustainability considerations can improve the level of resilience but are not currently given due attention. Reconstruction efforts need to focus on resilience factors but as part of urban development, they must also respond to the sustainability challenge. Sustainability issues in reconstruction projects need to be amplified, identified, processed, and managed properly. On-going research through empirical study aims to establish critical factors (CFs) for stakeholders in disaster prone areas to plan for and develop new building infrastructure through holistic considerations and balanced approaches to sustainability. A questionnaire survey examined a range of potential factors and the subsequent data analysis revealed six critical factors for sustainable Post Natural Disaster Reconstruction that include: considerable building materials and construction methods, good governance, multilateral coordination, appropriate land-use planning and policies, consideration of different social needs, and balanced combination of long-term and short-term needs. Findings from this study should have an influence on policy development towards Post Natural Disaster Reconstruction and help with the achievement of sustainable objectives.
Resumo:
Biorobotics has the potential to provide an integrated understanding from neural systems to behavior that is neither ethical nor technically feasible with living systems. Robots that can interact with animals in their natural environment open new possibilities for empirical studies in neuroscience. However, designing a robot that can interact with a rodent requires considerations that span a range of disciplines. For the rat's safety, the body form and movements of the robot need to take into consideration the safety of the animal, an appropriate size for the rodent arenas, and behaviors for interaction. For the robot's safety, its form must be robust in the face of typically inquisitive and potentially aggressive behaviors by the rodent, which can include chewing on exposed parts, including electronics, and deliberate or accidental fouling. We designed a rat-sized robot, the iRat (intelligent rat animat technology) for studies in neuroscience. The iRat is about the same size as a rat and has the ability to navigate autonomously around small environments. In this study we report the first interactions between the iRat and real rodents in a free exploration task. Studies with five rats show that the rats and iRat interact safely for both parties.
Resumo:
This paper addresses the problem of automatically estimating the relative pose between a push-broom LIDAR and a camera without the need for artificial calibration targets or other human intervention. Further we do not require the sensors to have an overlapping field of view, it is enough that they observe the same scene but at different times from a moving platform. Matching between sensor modalities is achieved without feature extraction. We present results from field trials which suggest that this new approach achieves an extrinsic calibration accuracy of millimeters in translation and deci-degrees in rotation.
Resumo:
In this study, the nature of the coupling interactions between copper and uracil as well as its several derivatives has been systematically investigated employing the atoms in molecules (AIM) theory and energy decomposition analyses. The whole interaction process has been investigated through the analyses of the radial distribution functions of the Cu⋯X (X = S and O) contact on the basis of the ab initio molecular dynamics. No direct relationship between the adsorption strengths and inhibition efficiencies of the inhibitors has been observed. Additionally, the possibility of the methyl-substituted dithiouracil species to act as copper corrosion inhibitors has been tested.
Resumo:
Intra-host sequence data from RNA viruses have revealed the ubiquity of defective viruses in natural viral populations, sometimes at surprisingly high frequency. Although defective viruses have long been known to laboratory virologists, their relevance in clinical and epidemiological settings has not been established. The discovery of long-term transmission of a defective lineage of dengue virus type 1 (DENV-1) in Myanmar, first seen in 2001, raised important questions about the emergence of transmissible defective viruses and their role in viral epidemiology. By combining phylogenetic analyses and dynamical modelling, we investigate how evolutionary and ecological processes at the intra-host and inter-host scales shaped the emergence and spread of the defective DENV-1 lineage. We show that this lineage of defective viruses emerged between June 1998 and February 2001, and that the defective virus was transmitted primarily through co-transmission with the functional virus to uninfected individuals. We provide evidence that, surprisingly, this co-transmission route has a higher transmission potential than transmission of functional dengue viruses alone. Consequently, we predict that the defective lineage should increase overall incidence of dengue infection, which could account for the historically high dengue incidence reported in Myanmar in 2001-2002. Our results show the unappreciated potential for defective viruses to impact the epidemiology of human pathogens, possibly by modifying the virulence-transmissibility trade-off, or to emerge as circulating infections in their own right. They also demonstrate that interactions between viral variants, such as complementation, can open new pathways to viral emergence.
Resumo:
This study presents research findings to informthe design and development of innovativemobile services aiming to enable collocated people to interact with each other in public urban places. The main goal of this research is to provide applications and deliver guidelines to positively influence the user experience of different public urban places during everyday urban life. This study describes the design and evaluation of mobile content and services enabling mobile mediated interactions in an anonymous way. The research described in this thesis is threefold. First, this study investigates how Information and Communication Technology (ICT) can be utilised in particular urban public places to influence the experience of urban dwellers during everyday life. The research into urban residents and public places guides the design of three different technologies that form case studies to investigate and discover possibilities to digitally augment the public urban space and make the invisible data of our interactions in the urban environment visible. • Capital Music enables urban dwellers to listen to their music on their mobile devices as usual but also visualises the artworks of songs currently being played and listened to by other users in ones’ vicinity. • PlaceTagz uses QR codes printed on stickers that link to a digital message board enabling collocated users to interact with each other over time resulting in a place-based digital memory. • Sapporo World Window, Brisbane Hot Spots, and YourScreen are interactive content applications allowing people to share data with their mobile phones on public urban screens. The applications employ mobile phones to mediate interactions in form of location and video sharing. Second, this study sets out to explore the quality and nature of the experiences created through the developed and deployed case study applications. The development of a user experience framework for evaluating mobile mediated interactions in urban public places is described and applied within each case. Third, drawing on research from urban sociology, psychology, urban design, and the findings from this study, this thesis discusses how such interactions can have an impact on the urban experience.
Resumo:
This study aims to open-up the black box of the boardroom by directly observing directors’ interactions during meetings to better understand board processes. Design/methodology/approach: We analyse videotaped observations of board meetings at two Australian companies to develop insights into what directors do in meetings and how they participate in decision-making processes. The direct observations are triangulated with semi-structured interviews, mini-surveys and document reviews. Findings: Our analyses lead to two key findings: (i) while board meetings appear similar at a surface-level, boardroom interactions vary significantly at a deeper level (i.e. board members participate differently during different stages of discussions) and (ii) factors at multiple levels of analysis explain differences in interaction patterns, revealing the complex and nested nature of boardroom discussions. Research implications: By documenting significant intra- and inter-board meeting differences our study (i) challenges the widespread notion of board meetings as rather homogeneous and monolithic, (ii) points towards agenda items as a new unit of analysis (iii) highlights the need for more multi-level analyses in a board setting. Practical implications: While policy makers have been largely occupied with the “right” board composition, our findings suggest that decision outcomes or roles’ execution could be potentially affected by interactions at a board level. Differences in board meeting styles might explain prior ambiguous board structure-performance results, enhancing the need for greater normative consideration of how boards do their work. Originality/value: Our study complements existing research on boardroom dynamics and provides a systematic account of director interactions during board meetings.
Resumo:
A new optimal control model of the interactions between a growing tumour and the host immune system along with an immunotherapy treatment strategy is presented. The model is based on an ordinary differential equation model of interactions between the growing tu- mour and the natural killer, cytotoxic T lymphocyte and dendritic cells of the host immune system, extended through the addition of a control function representing the application of a dendritic cell treat- ment to the system. The numerical solution of this model, obtained from a multi species Runge–Kutta forward-backward sweep scheme, is described. We investigate the effects of varying the maximum al- lowed amount of dendritic cell vaccine administered to the system and find that control of the tumour cell population is best effected via a high initial vaccine level, followed by reduced treatment and finally cessation of treatment. We also found that increasing the strength of the dendritic cell vaccine causes an increase in the number of natural killer cells and lymphocytes, which in turn reduces the growth of the tumour.