851 resultados para Nanocrystalline TiO2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline zirconia was synthesized and used as catalyst support for methanol synthesis. The nanocrystallite particles have new physical and textural properties which are critical in determining the catalytic performance. Nanocrystalline zirconia changes the electronic structure and affects the metal and support interactions on the catalyst. leading to facile reduction. intimate interaction between copper and zirconia, more corner defects and oxygen vacancies on the surface of the catalyst. All these changes are beneficial to the reaction of methanol synthesis from hydrogenation of CO2. As a result. higher conversion of CO2 and selectivity of methanol are achieved compared to the catalysts prepared by conventional co-precipitation method. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Without introduction of any stabilizer, the mesoporous nanocrystalline zirconia with lamellar and MSU structure was obtained via solid state reaction coupled with surfactant templating method. The phase, surface area and pore structure of zirconia prepared with this novel method could be designed, tailored and controlled by varying synthesis parameters. The phase transformation was controlled by particle size. The mesostructure possesses nanocrystalline pore wall, which renders it more thermally stable than amorphous framework. The results suggest strongly that in solid state synthesis system mesostructure formation still follow the supramolecular self-assembly mechanism. The lamellar and reverse hexagonal structure could be transformed at different OH-/Zr molar ratios in order to sustain the low surface energy of the mesophases. The lamellar structure was preferred at higher OH-/Zr molar ratios but reverse hexagonal was at low ratios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A family of titania derived nanocomposites synthesized via sol-gel and hydrothermal routes exhibit excellent performance for the photocatalytic degradation of two important exemplar water pollutants, oxytetracycline and Congo Red. Low loadings of Co3O4 nanoparticles dispersed over the surfaces of anatase TiO2 confer visible light photoactivity for the aqueous phase decomposition of organics through the resulting heterojunction and reduced band gap. Subsequent modification of these Co3O4/TiO2 composites by trace amounts of graphene oxide nanosheets in the presence of a diamine linker further promotes both oxytetracycline and Congo Red photodegradation under simulated solar and visible irradiation, through a combination of enhanced photoresponse and consequent radical generation. Radical quenching and fluorescence experiments implicate holes and hydroxyl radicals as the respective primary and secondary active species responsible for oxidative photodegradation of pollutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A femtosecond pump-probe setup was used to measure the time resolved reflectivity of hydrogenated amorphous silicon containing crystalline silicon nanoparticles at eight different incidence angles. Results fitted with the Drude model found a scattering rate of G = 2-1+1.2×1015?s-1 at a corresponding carrier concentration of ~ 1020?cm-3. The observed scattering rate is attributed to enhanced carrier-carrier interaction in optically pumped nanocrystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we investigate the impact of minute amounts of pure nitrogen addition into conventional methane/hydrogen mixtures on the growth characteristics of nanocrystalline diamond (NCD) films by microwave plasma assisted chemical vapour deposition (MPCVD), under high power conditions. The NCD films were produced from a gas mixture of 4% CH4/H2 with two different concentrations of N2 additive and microwave power ranging from 3.0 kW to 4.0 kW, while keeping all the other operating parameters constant. The morphology, grain size, microstructure and texture of the resulting NCD films were characterized by using scanning electron microscope (SEM), micro-Raman spectroscopy and X-ray diffraction (XRD) techniques. N2 addition was found to be the main parameter responsible for the formation and for the key change in the growth characteristics of NCD films under the employed conditions. Growth rates ranging from 5.4 μm/h up to 9.6 μm/h were achieved for the NCD films, much higher than those usually reported in the literature. The enhancing factor of nitrogen addition on NCD growth rate was obtained by comparing with the growth rate of large-grained microcrystalline diamond films grown without nitrogen and discussed by comparing with that of single crystal diamond through theoretical work in the literature. This achievement on NCD growth rate makes the technology interesting for industrial applications where fast coating of large substrates is highly desirable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a novel type of multiple-layer photomixer based on amorphous/nano-crystalline-Si. Such a device implies that it could be possible to enhance the conversion efficiency from optical power to THz emission by increasing the absorption length and by reducing the device overheating through the use of substrates with higher thermal conductivity compared to GaAs. Our calculations show that the output power from a two-layer Si-based photomixer is at least ten times higher than that from conventional LT-GaAs photomixers at 1 THz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used a high-energy ball mill to prepare single-phased nanocrystalline Fe, Fe90Ni10, Fe85Al4Si11, Ni99Fe1 and Ni90Fe10 powders. We then increased their grain sizes by annealing. We found that a low-temperature anneal (T < 0.4 Tm) softens the elemental nanocrystalline Fe but hardens both the body-centered cubic iron- and face-centered cubic nickel-based solid solutions, leading in these alloys to an inverse Hall–Petch relationship. We explain this abnormal Hall–Petch effect in terms of solute segregation to the grain boundaries of the nanocrystalline alloys. Our analysis can also explain the inverse Hall–Petch relationship found in previous studies during the thermal anneal of ball-milled nanocrystalline Fe (containing ∼1.5 at.% impurities) and electrodeposited nanocrystalline Ni (containing ∼1.0 at.% impurities).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitride materials and coatings have attracted extensive research interests for various applications in advanced nuclear reactors due to their unique combination of physical properties, including high temperature stability, excellent corrosion resistance, superior mechanical property and good thermal conductivity. In this paper, the ion irradiation effects in nanocrystalline TiN coatings as a function of grain size are reported. TiN thin films (thickness of 100 nm) with various grain sizes (8-100 nm) were prepared on Si substrates by a pulsed laser deposition technique. All the samples were irradiated with He ions to high fluences at room temperature. Transmission electron microscopy (TEM) and high resolution TEM on the ion-irradiated samples show that damage accumulation in the TiN films reduces as the grain size reduces. Electrical resistivity of the ion-irradiated films increases slightly compared with the as-deposited ones. These observations demonstrate a good radiation-tolerance property of nanocrystalline TiN films. © 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an investigation into the high-frequency conductivity of optically excited charge carriers far from equilibrium with the lattice. The investigated samples consist of hydrogenated nanocrystalline silicon films grown on a thin film of silicon oxide on top of a silicon substrate. For the investigation, we used an optical femtosecond pump-probe setup to measure the reflectance change of a probe beam. The pump beam ranged between 580 and 820nm, whereas the probe wavelength spanned 770 to 810nm. The pump fluence was fixed at 0.6mJ/cm2. We show that at a fixed delay time of 300fs, the conductivity of the excited electron-hole plasma is described well by a classical conductivity model of a hot charge carrier gas found at Maxwell-Boltzmann distribution, while Fermi-Dirac statics is not suitable. This is corroborated by values retrieved from pump-probe reflectance measurements of the conductivity and its dependence on the excitation wavelength and carrier temperature. The conductivity decreases monotonically as a function of the excitation wavelength, as expected for a nondegenerate charge carrier gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocystalline TiO2 particles were successfully synthesized on porous hosts (SBA-15 and ZSM-15) via a sol-gel impregnation method. Resulting nanocomposites were characterized by XRD, TEM, BET surface analysis, Raman and UV-vis diffuse reflectance spectroscopy, and their photocatalytic activity for H2 production evaluated. XRD evidences the formation of anatase nanoparticles over both ZSM-5 and SBA-15 porous supports, with TEM highlighting a strong particle size dependence on titania precursor concentration. Photocatalytic activities of TiO2/ZSM-5 and TiO2/SBA-15 composites were significantly enhanced compared to pure TiO2, owing to the smaller TiO2 particle size and higher surface area of the former. TiO2 loadings over the porous supports and concomitant photocatalytic hydrogen production were optimized with respect to light absorption, available surface reaction sites and particle size. 10%TiO2/ZSM-5 and 20%TiO2/SBA-15 proved the most active photocatalysts, exhibiting extraordinary hydrogen evolution rates of 10,000 and 8800μmolgTiO2 -1 h-1 under full arc, associated with high external quantum efficiencies of 12.6% and 5.4% respectively under 365nm irradiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High temperature processing of solvothermally synthesised MgO nanoparticles promotes striking changes in their morphology, and surface chemical and electronic structure. As-prepared NanoMgO comprised ∼4 nm cubic periclase nanocrystals, interspersed within an amorphous Mg(OH)(OCH3) matrix. These crystallites appear predominantly (1 0 0) terminated, and the overall material exhibits carbonate and hydroxyl surface functionalities of predominantly weak/moderate base character. Heating promotes gradual crystallisation and growth of the MgO nanoparticles, and concomitant loss of Mg(OH)(OCH3). In situ DRIFTS confirms the residual precursor and surface carbonate begin to decompose above 300 °C, while in situ XPS shows these morphological changes are accompanied by the disappearance of surface hydroxyl/methoxide species and genesis of O- centres which enhance both the surface density and basicity of the resulting stepped and defective MgO nanocrystals. The catalytic performance in tributyrin transesterification with methanol is directly proportional to the density of strong surface base sites. © 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive surface of mesoporous nanocrystalline silicon was used to synthesise noble metal nanoparticles via in situ reduction of the precursor salt solutions. The synthetic methodology for metal nanoparticle formation was systematically developed, and reaction conditions of metal salts reduction were optimised to prepare nanoparticles of controlled size distribution in the order 5–10 nm inside the mesoporous silicon template. CO oxidation was used as a test reaction for the synthesised Pt/porous silicon catalysts. Sharp reaction light-off was observed at about 120 °C on the optimised catalysts. The catalysts were shown to be stable in the extended steady-state runs and in the catalysts re-use experiments. Metal nanoparticles were shown to be stable to sintering at elevated temperatures up to 1000 °C. However, after thermal treatment on air, Pt nanoparticles were covered by a SiOx layer and were less active in CO oxidation.