920 resultados para NETWORK MODELS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a discipline, supply chain management (SCM) has traditionally been primarily concerned with the procurement, processing, movement and sale of physical goods. However an important class of products has emerged - digital products - which cannot be described as physical as they do not obey commonly understood physical laws. They do not possess mass or volume, and they require no energy in their manufacture or distribution. With the Internet, they can be distributed at speeds unimaginable in the physical world, and every copy produced is a 100% perfect duplicate of the original version. Furthermore, the ease with which digital products can be replicated has few analogues in the physical world. This paper assesses the effect of non-physicality on one such product – software – in relation to the practice of SCM. It explores the challenges that arise when managing the software supply chain and how practitioners are addressing these challenges. Using a two-pronged exploratory approach that examines the literature around software management as well as direct interviews with software distribution practitioners, a number of key challenges associated with software supply chains are uncovered, along with responses to these challenges. This paper proposes a new model for software supply chains that takes into account the non-physicality of the product being delivered. Central to this model is the replacement of physical flows with flows of intellectual property, the growing importance of innovation over duplication and the increased centrality of the customer in the entire process. Hybrid physical / digital supply chains are discussed and a framework for practitioners concerned with software supply chains is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epilepsy is one of the most common neurological disorders, a large fraction of which is resistant to pharmacotherapy. In this light, understanding the mechanisms of epilepsy and its intractable forms in particular could create new targets for pharmacotherapeutic intervention. The current project explores the dynamic changes in neuronal network function in the chronic temporal lobe epilepsy (TLE) in rat and human brain in vitro. I focused on the process of establishment of epilepsy (epileptogenesis) in the temporal lobe. Rhythmic behaviour of the hippocampal neuronal networks in healthy animals was explored using spontaneous oscillations in the gamma frequency band (SγO). The use of an improved brain slice preparation technique resulted in the natural occurence (in the absence of pharmacological stimulation) of rhythmic activity, which was then pharmacologically characterised and compared to other models of gamma oscillations (KA- and CCh-induced oscillations) using local field potential recording technique. The results showed that SγO differed from pharmacologically driven models, suggesting higher physiological relevance of SγO. Network activity was also explored in the medial entorhinal cortex (mEC), where spontaneous slow wave oscillations (SWO) were detected. To investigate the course of chronic TLE establishment, a refined Li-pilocarpine-based model of epilepsy (RISE) was developed. The model significantly reduced animal mortality and demonstrated reduced intensity, yet high morbidy with almost 70% mean success rate of developing spontaneous recurrent seizures. We used SγO to characterize changes in the hippocampal neuronal networks throughout the epileptogenesis. The results showed that the network remained largely intact, demonstrating the subtle nature of the RISE model. Despite this, a reduction in network activity was detected during the so-called latent (no seizure) period, which was hypothesized to occur due to network fragmentation and an abnormal function of kainate receptors (KAr). We therefore explored the function of KAr by challenging SγO with kainic acid (KA). The results demonstrated a remarkable decrease in KAr response during the latent period, suggesting KAr dysfunction or altered expression, which will be further investigated using a variety of electrophysiological and immunocytochemical methods. The entorhinal cortex, together with the hippocampus, is known to play an important role in the TLE. Considering this, we investigated neuronal network function of the mEC during epileptogenesis using SWO. The results demonstrated a striking difference in AMPAr function, with possible receptor upregulation or abnormal composition in the early development of epilepsy. Alterations in receptor function inevitably lead to changes in the network function, which may play an important role in the development of epilepsy. Preliminary investigations were made using slices of human brain tissue taken following surgery for intratctable epilepsy. Initial results showed that oscillogenesis could be induced in human brain slices and that such network activity was pharmacologically similar to that observed in rodent brain. Overall, our findings suggest that excitatory glutamatergic transmission is heavily involved in the process of epileptogenesis. Together with other types of receptors, KAr and AMPAr contribute to epilepsy establishment and may be the key to uncovering its mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic asset rating (DAR) is one of the number of techniques that could be used to facilitate low carbon electricity network operation. Previous work has looked at this technique from an asset perspective. This paper focuses, instead, from a network perspective by proposing a dynamic network rating (DNR) approach. The models available for use with DAR are discussed and compared using measured load and weather data from a trial network area within Milton Keynes in the central area of the U.K. This paper then uses the most appropriate model to investigate, through a network case study, the potential gains in dynamic rating compared to static rating for the different network assets - transformers, overhead lines, and cables. This will inform the network operator of the potential DNR gains on an 11-kV network with all assets present and highlight the limiting assets within each season.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed conceptual and a corresponding analytical traffic models of an overall (virtual) circuit switching telecommunication system are used. The models are relatively close to real-life communication systems with homogeneous terminals. In addition to Normalized and Pie-Models Ensue Model and Denial Traffic concept are proposed, as a parts of a technique for presentation and analysis of overall network traffic models functional structure; The ITU-T definitions for: fully routed, successful and effective attempts, and effective traffic are re-formulated. Definitions for fully routed traffic and successful traffic are proposed, because they are absent in the ITU-T recommendations; A definition of demand traffic (absent in ITU-T Recommendations) is proposed. For each definition are appointed: 1) the correspondent part of the conceptual model graphical presentation; 2) analytical equations, valid for mean values, in a stationary state. This allows real network traffic considered to be classified more precisely and shortly. The proposed definitions are applicable for every telecommunication system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data envelopment analysis (DEA) is the most widely used methods for measuring the efficiency and productivity of decision-making units (DMUs). The need for huge computer resources in terms of memory and CPU time in DEA is inevitable for a large-scale data set, especially with negative measures. In recent years, wide ranges of studies have been conducted in the area of artificial neural network and DEA combined methods. In this study, a supervised feed-forward neural network is proposed to evaluate the efficiency and productivity of large-scale data sets with negative values in contrast to the corresponding DEA method. Results indicate that the proposed network has some computational advantages over the corresponding DEA models; therefore, it can be considered as a useful tool for measuring the efficiency of DMUs with (large-scale) negative data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic asset rating is one of a number of techniques that could be used to facilitate low carbon electricity network operation. This paper focusses on distribution level transformer dynamic rating under this context. The models available for use with dynamic asset rating are discussed and compared using measured load and weather conditions from a trial Network area within Milton Keynes. The paper then uses the most appropriate model to investigate, through simulation, the potential gains in dynamic rating compared to static rating under two transformer cooling methods to understand the potential gain to the Network Operator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The questions of designing multicriteria control systems on the basis of logic models of composite dynamic objects are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an effective decision making system for leak detection based on multiple generalized linear models and clustering techniques. The training data for the proposed decision system is obtained by setting up an experimental pipeline fully operational distribution system. The system is also equipped with data logging for three variables; namely, inlet pressure, outlet pressure, and outlet flow. The experimental setup is designed such that multi-operational conditions of the distribution system, including multi pressure and multi flow can be obtained. We then statistically tested and showed that pressure and flow variables can be used as signature of leak under the designed multi-operational conditions. It is then shown that the detection of leakages based on the training and testing of the proposed multi model decision system with pre data clustering, under multi operational conditions produces better recognition rates in comparison to the training based on the single model approach. This decision system is then equipped with the estimation of confidence limits and a method is proposed for using these confidence limits for obtaining more robust leakage recognition results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our approach for knowledge presentation is based on the idea of expert system shell. At first we will build a graph shell of both possible dependencies and possible actions. Then, reasoning by means of Loglinear models, we will activate some nodes and some directed links. In this way a Bayesian network and networks presenting loglinear models are generated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the basis of convolutional (Hamming) version of recent Neural Network Assembly Memory Model (NNAMM) for intact two-layer autoassociative Hopfield network optimal receiver operating characteristics (ROCs) have been derived analytically. A method of taking into account explicitly a priori probabilities of alternative hypotheses on the structure of information initiating memory trace retrieval and modified ROCs (mROCs, a posteriori probabilities of correct recall vs. false alarm probability) are introduced. The comparison of empirical and calculated ROCs (or mROCs) demonstrates that they coincide quantitatively and in this way intensities of cues used in appropriate experiments may be estimated. It has been found that basic ROC properties which are one of experimental findings underpinning dual-process models of recognition memory can be explained within our one-factor NNAMM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents a new network-flow interpretation of Łukasiewicz’s logic based on models with an increased effectiveness. The obtained results show that the presented network-flow models principally may work for multivalue logics with more than three states of the variables i.e. with a finite set of states in the interval from 0 to 1. The described models give the opportunity to formulate various logical functions. If the results from a given model that are contained in the obtained values of the arc flow functions are used as input data for other models then it is possible in Łukasiewicz’s logic to interpret successfully other sophisticated logical structures. The obtained models allow a research of Łukasiewicz’s logic with specific effective methods of the network-flow programming. It is possible successfully to use the specific peculiarities and the results pertaining to the function ‘traffic capacity of the network arcs’. Based on the introduced network-flow approach it is possible to interpret other multivalue logics – of E.Post, of L.Brauer, of Kolmogorov, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a complicated business network finding a supplier can be a very time consuming task. The technology of competence management is aimed to support such kind of tasks. The paper presents an approach to support interaction between business network members based on such technologies as competence management and knowledge management. The conceptual models of the context-driven competence management system and production network member competence profile are described. The usage of the competence management system is illustrated via an example from automotive industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In nonlinear and stochastic control problems, learning an efficient feed-forward controller is not amenable to conventional neurocontrol methods. For these approaches, estimating and then incorporating uncertainty in the controller and feed-forward models can produce more robust control results. Here, we introduce a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. A nonlinear multi-variable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non-Gaussian distributions of control signal as well as processes with hysteresis. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the problem of finding an optimal deployment of information resources on an InfoStation network in order to minimize the overhead and reduce the time needed to satisfy user requests for resources. The RG-Optimization problem and an approach for its solving are presented as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most prior new product diffusion (NPD) models do not specifically consider the role of the business model in the process. However, the context of NPD in today's market has been changed dramatically by the introduction of new business models. Through reinterpretation and extension, this paper empirically examines the feasibility of applying Bass-type NPD models to products that are commercialized by different business models. More specifically, the results and analysis of this study consider the subscription business model for service products, the freemium business model for digital products, and a pre-paid and post-paid business model that is widely used by mobile network providers. The paper offers new insights derived from implementing the models in real-life cases. It also highlights three themes for future research.