593 resultados para NANOCOMPOSITE MAGNETS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of shock generated vibration is very common in practice and difficult to isolate due to the high levels of excitation involved and its transient nature. If not properly isolated it could lead to large transmitted forces and displacements. Typically, classical shock isolation relies on the use of passive stiffness elements to absorb energy by deformation and some damping mechanism to dissipate residual vibration. The approach of using nonlinear stiffness elements is explored in this paper, focusing in providing an isolation system with low dynamic stiffness. The possibilities of using such a configuration for a shock mount are studied experimentally following previous theoretical models. The model studied considers electromagnets and permanent magnets in order to obtain nonlinear stiffness forces using different voltage configurations. It is found that the stiffness nonlinearities could be advantageous in improving shock isolation in terms of absolute displacement and acceleration response when compared with linear elastic elements. Copyright (C) 2015 Elsevier Ltd. All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructured composites based on titanium dioxide have been studied in order to improve optical and photo-catalytic properties, as well as their performance in gas sensors. In this work, titanium and tin dioxides were simultaneously synthesized by the polyol method resulting in TiO2 platelet coated with SnO2 nanoparticles as was observed by scanning electron microscopy. The thermal analysis showed that the combined synthesis promotes more easily the crystallization of the TiO2 rutile phase. The composite obtained after heat treatment at 500 degrees C showed to be formed of almost only rutile phases of both oxides. The optical properties analyzed by UV-Vis spectroscopy showed that the combined oxides have higher absorbance, which reinforces a model found in the literature based on the flow of photo-generated electrons to the conduction band of SnO2 delaying the recombination of charges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we study the behavior of the falling motion of neodymium magnets, inside conductive a metallic duct made of copper, aluminum, brass and bronze. We obtain, analyze and present results involving relationships between material and dynamical properties of falling neodymium magnets with the mechanical and electrical properties of conductive materials, such as mass, electrical resistivity, electrical conductivity, length and external diameter

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work shows the preparation and characterization of the new nanocomposites based on fibroin and biocellulose. Bacterial cellulose (BC) is an exopolysaccharide produced by bacteria of the genus Gluconacetobacter, which it has identical chemical structure of the cellulose from plants and it has gained attention in the field of research for its unique properties as excellent mechanical properties when dry and hydrated , higher capacity of water retention, moldability , biodegradability and excellent biological affinity . Silk fibroin (SF) is a structural protein present in the cocoon of the silkworm, Bombyx mori, has been identified as suitable for developing optical devices, tissue engineering application, enzyme immobilization, controlled release drug agent biopolymer. Silk fibroin/bacterial cellulose nanocomposite films were prepared impregnating different cellulose charges (0.5 %, 1.0 %, 1.5 %, 2.5 %, 5.0 % and 10.0 %) weight/weight. According mechanical tests and water and Paynes's cup permeability showed that SF/BC 1% nanocomposite has the most relevant results. Poliethylenoglicol (PEG) containing SF films improved optical and mechanical properties when compared to pristine SF film. New SF/BC nanocomposites could be applied in Medicine, as biodegradable packaging and flexible substrates for OLEDs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructured composites based on titanium dioxide have been studied in order to improve optical and photo-catalytic properties, as well as their performance in gas sensors. In this work, titanium and tin dioxides were simultaneously synthesized by the polyol method resulting in TiO2 platelet coated with SnO2 nanoparticles as was observed by scanning electron microscopy. The thermal analysis showed that the combined synthesis promotes more easily the crystallization of the TiO2 rutile phase. The composite obtained after heat treatment at 500 °C showed to be formed of almost only rutile phases of both oxides. The optical properties analyzed by UV-Vis spectroscopy showed that the combined oxides have higher absorbance, which reinforces a model found in the literature based on the flow of photo-generated electrons to the conduction band of SnO2 delaying the recombination of charges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS