878 resultados para Multi-agent computing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a multi-agent architecture that was designed to develop processes supervision and control systems, with the main objective to automate tasks that are repetitive and stressful, and error prone when performed by humans. A set of agents were identified, based on the study of a number of applications found in the literature, that use the approach of multi-agent systems for data integration and process monitoring to faults detection and diagnosis, these agents are used as basis of the proposed multi-agent architecture. A prototype system for the analysis of abnormalities during oil wells drilling was developed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Breakthrough advances in microprocessor technology and efficient power management have altered the course of development of processors with the emergence of multi-core processor technology, in order to bring higher level of processing. The utilization of many-core technology has boosted computing power provided by cluster of workstations or SMPs, providing large computational power at an affordable cost using solely commodity components. Different implementations of message-passing libraries and system softwares (including Operating Systems) are installed in such cluster and multi-cluster computing systems. In order to guarantee correct execution of message-passing parallel applications in a computing environment other than that originally the parallel application was developed, review of the application code is needed. In this paper, a hybrid communication interfacing strategy is proposed, to execute a parallel application in a group of computing nodes belonging to different clusters or multi-clusters (computing systems may be running different operating systems and MPI implementations), interconnected with public or private IP addresses, and responding interchangeably to user execution requests. Experimental results demonstrate the feasibility of this proposed strategy and its effectiveness, through the execution of benchmarking parallel applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Agent Communication Languages (ACLs) have been developed to provide a way for agents to communicate with each other supporting cooperation in Multi-Agent Systems. In the past few years many ACLs have been proposed for Multi-Agent Systems, such as KQML and FIPA-ACL. The goal of these languages is to support high-level, human like communication among agents, exploiting Knowledge Level features rather than symbol level ones. Adopting these ACLs, and mainly the FIPA-ACL specifications, many agent platforms and prototypes have been developed. Despite these efforts, an important issue in the research on ACLs is still open and concerns how these languages should deal (at the Knowledge Level) with possible failures of agents. Indeed, the notion of Knowledge Level cannot be straightforwardly extended to a distributed framework such as MASs, because problems concerning communication and concurrency may arise when several Knowledge Level agents interact (for example deadlock or starvation). The main contribution of this Thesis is the design and the implementation of NOWHERE, a platform to support Knowledge Level Agents on the Web. NOWHERE exploits an advanced Agent Communication Language, FT-ACL, which provides high-level fault-tolerant communication primitives and satisfies a set of well defined Knowledge Level programming requirements. NOWHERE is well integrated with current technologies, for example providing full integration for Web services. Supporting different middleware used to send messages, it can be adapted to various scenarios. In this Thesis we present the design and the implementation of the architecture, together with a discussion of the most interesting details and a comparison with other emerging agent platforms. We also present several case studies where we discuss the benefits of programming agents using the NOWHERE architecture, comparing the results with other solutions. Finally, the complete source code of the basic examples can be found in appendix.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The advent of distributed and heterogeneous systems has laid the foundation for the birth of new architectural paradigms, in which many separated and autonomous entities collaborate and interact to the aim of achieving complex strategic goals, impossible to be accomplished on their own. A non exhaustive list of systems targeted by such paradigms includes Business Process Management, Clinical Guidelines and Careflow Protocols, Service-Oriented and Multi-Agent Systems. It is largely recognized that engineering these systems requires novel modeling techniques. In particular, many authors are claiming that an open, declarative perspective is needed to complement the closed, procedural nature of the state of the art specification languages. For example, the ConDec language has been recently proposed to target the declarative and open specification of Business Processes, overcoming the over-specification and over-constraining issues of classical procedural approaches. On the one hand, the success of such novel modeling languages strongly depends on their usability by non-IT savvy: they must provide an appealing, intuitive graphical front-end. On the other hand, they must be prone to verification, in order to guarantee the trustworthiness and reliability of the developed model, as well as to ensure that the actual executions of the system effectively comply with it. In this dissertation, we claim that Computational Logic is a suitable framework for dealing with the specification, verification, execution, monitoring and analysis of these systems. We propose to adopt an extended version of the ConDec language for specifying interaction models with a declarative, open flavor. We show how all the (extended) ConDec constructs can be automatically translated to the CLIMB Computational Logic-based language, and illustrate how its corresponding reasoning techniques can be successfully exploited to provide support and verification capabilities along the whole life cycle of the targeted systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biomedical analyses are becoming increasingly complex, with respect to both the type of the data to be produced and the procedures to be executed. This trend is expected to continue in the future. The development of information and protocol management systems that can sustain this challenge is therefore becoming an essential enabling factor for all actors in the field. The use of custom-built solutions that require the biology domain expert to acquire or procure software engineering expertise in the development of the laboratory infrastructure is not fully satisfactory because it incurs undesirable mutual knowledge dependencies between the two camps. We propose instead an infrastructure concept that enables the domain experts to express laboratory protocols using proper domain knowledge, free from the incidence and mediation of the software implementation artefacts. In the system that we propose this is made possible by basing the modelling language on an authoritative domain specific ontology and then using modern model-driven architecture technology to transform the user models in software artefacts ready for execution in a multi-agent based execution platform specialized for biomedical laboratories.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents some different techniques designed to drive a swarm of robots in an a-priori unknown environment in order to move the group from a starting area to a final one avoiding obstacles. The presented techniques are based on two different theories used alone or in combination: Swarm Intelligence (SI) and Graph Theory. Both theories are based on the study of interactions between different entities (also called agents or units) in Multi- Agent Systems (MAS). The first one belongs to the Artificial Intelligence context and the second one to the Distributed Systems context. These theories, each one from its own point of view, exploit the emergent behaviour that comes from the interactive work of the entities, in order to achieve a common goal. The features of flexibility and adaptability of the swarm have been exploited with the aim to overcome and to minimize difficulties and problems that can affect one or more units of the group, having minimal impact to the whole group and to the common main target. Another aim of this work is to show the importance of the information shared between the units of the group, such as the communication topology, because it helps to maintain the environmental information, detected by each single agent, updated among the swarm. Swarm Intelligence has been applied to the presented technique, through the Particle Swarm Optimization algorithm (PSO), taking advantage of its features as a navigation system. The Graph Theory has been applied by exploiting Consensus and the application of the agreement protocol with the aim to maintain the units in a desired and controlled formation. This approach has been followed in order to conserve the power of PSO and to control part of its random behaviour with a distributed control algorithm like Consensus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Il sempre crescente numero di applicazioni di reti di sensori, robot cooperanti e formazioni di veicoli, ha fatto sì che le problematiche legate al coordinamento di sistemi multi-agente (MAS) diventassero tra le più studiate nell’ambito della teoria dei controlli. Esistono numerosi approcci per affrontare il problema, spesso profondamente diversi tra loro. La strategia studiata in questa tesi è basata sulla Teoria del Consenso, che ha una natura distribuita e completamente leader-less; inoltre il contenuto informativo scambiato tra gli agenti è ridotto al minimo. I primi 3 capitoli introducono ed analizzano le leggi di interazione (Protocolli di Consenso) che permettono di coordinare un Network di sistemi dinamici. Nel capitolo 4 si pensa all'applicazione della teoria al problema del "loitering" circolare di più robot volanti attorno ad un obiettivo in movimento. Si sviluppa a tale scopo una simulazione in ambiente Matlab/Simulink, che genera le traiettorie di riferimento di raggio e centro impostabili, a partire da qualunque posizione iniziale degli agenti. Tale simulazione è stata utilizzata presso il “Center for Research on Complex Automated Systems” (CASY-DEI Università di Bologna) per implementare il loitering di una rete di quadrirotori "CrazyFlie". I risultati ed il setup di laboratorio sono riportati nel capitolo 5. Sviluppi futuri si concentreranno su algoritmi locali che permettano agli agenti di evitare collisioni durante i transitori: il controllo di collision-avoidance dovrà essere completamente indipendente da quello di consenso, per non snaturare il protocollo di Consenso stesso.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Humans and animals face decision tasks in an uncertain multi-agent environment where an agent's strategy may change in time due to the co-adaptation of others strategies. The neuronal substrate and the computational algorithms underlying such adaptive decision making, however, is largely unknown. We propose a population coding model of spiking neurons with a policy gradient procedure that successfully acquires optimal strategies for classical game-theoretical tasks. The suggested population reinforcement learning reproduces data from human behavioral experiments for the blackjack and the inspector game. It performs optimally according to a pure (deterministic) and mixed (stochastic) Nash equilibrium, respectively. In contrast, temporal-difference(TD)-learning, covariance-learning, and basic reinforcement learning fail to perform optimally for the stochastic strategy. Spike-based population reinforcement learning, shown to follow the stochastic reward gradient, is therefore a viable candidate to explain automated decision learning of a Nash equilibrium in two-player games.