914 resultados para Monitoring System
Resumo:
Our aim was to determine the normative reference values of cardiorespiratory fitness (CRF) and to establish the proportion of subjects with low CRF suggestive of future cardio-metabolic risk.
Resumo:
The objectives of this study are to investigate the association between cardiorespiratory fitness and cardiovascular risk factors in schoolchildren and to evaluate the degree of association between overall and abdominal adiposity and cardiorespiratory fitness. A total of 1,875 children and adolescents attending public schools in Bogota, Colombia (56.2% girls; age range of 9–17.9 years). A cardiovascular risk score (Z-score) was calculated and participants were divided into tertiles according to low and high levels of overall (sum of the skinfold thicknesses) and abdominal adiposity. Schoolchildren with a high level of overall adiposity demonstrated significant differences in seven of the 10 variables analyzed (i.e. systolic and diastolic blood pressure, triglycerides, triglycerides/HDL-c ratio, total cholesterol, glucose and cardiovascular risk score). Schoolchildren with high levels of both overall and abdominal adiposity and low cardiorespiratory fitness had the least favorable cardiovascular risk factors score. These findings may be relevant to health promotion in Colombian youth.
Resumo:
Introducción: El monitoreo hemodinámico es una herramienta para diagnosticar el choque cardiogénico y monitorear la respuesta al tratamiento; puede ser invasivo, mínimamente invasivo o no invasivo. Se realiza rutinariamente con catéter de arteria pulmonar (CAP) o catéter de Swan Ganz; nuevas técnicas de monitoreo hemodinámico mínimamente invasivo tienen menor tasa de complicaciones. Actualmente se desconoce cuál técnica de monitoreo cuenta con mayor seguridad en el paciente con choque cardiogénico. Objetivo: Evaluar la seguridad del monitoreo hemodinámico invasivo comparado con el mínimamente invasivo en pacientes con choque cardiogénico en cuidado intensivo adultos. Diseño: Revisión sistemática de la literatura. Búsqueda en Pubmed, EMBASE, OVID - Cochrane Library, Lilacs, Scielo, registros de ensayos clínicos, actas de conferencias, repositorios, búsqueda de literatura gris en Google Scholar, Teseo y Open Grey hasta agosto de 2016, publicados en inglés y español. Resultados: Se identificó un único estudio con 331 pacientes críticamente enfermos que comparó el monitoreo hemodinámico con CAP versus PiCCO que concluyó que después de la corrección de los factores de confusión, la elección del tipo de monitoreo no influyó en los resultados clínicos más importantes en términos de complicaciones y mortalidad. Dado que se incluyeron otros diagnósticos, no es posible extrapolar los resultados sólo a choque cardiogénico. Conclusión: En la literatura disponible no hay evidencia de que el monitoreo hemodinámico invasivo comparado con el mínimamente invasivo, en pacientes adultos críticamente enfermos con choque cardiogénico, tenga diferencias en cuanto a complicaciones y mortalidad.
Resumo:
Introducción: El tiempo promedio del efecto máximo de la insulina regular rápida en la glucemia postprandial ha sido considerado durante años de 120 minutos. En pacientes con Diabetes Mellitus (DM) que usan insulinas análogas este tiempo y los factores asociados no se encuentran reportados para ser aplicados en el automonitoreo. El objetivo de este estudio fue calcular el tiempo y factores relacionados al efecto máximo de la insulina en la glucemia postprandial. Metodología: Se desarrolló un estudio longitudinal retrospectivo a partir de una fuente secundaria donde se realizó un análisis descriptivo y bivariado con las variables demográficas y clínicas presentes en la población. Resultados: El tiempo promedio del pico máximo de insulina en pacientes con DM1 fue de 78.4 (DE± 16.512) y DM2 75.01(DE± 12.02) minutos. El 75% de la población con DM1 y el 54.2% en DM2 era de sexo femenino, la edad promedio en DM1 era 42.38 años y en DM2 68 años, en cuanto a la categorización del IMC el 50% de la población en DM1 y el 37.5% en DM2 estaban dentro del rango de obesidad y se encontró una relación con respecto al tipo de comida “desayuno-cena” vs el tiempo promedio del efecto máximo de la insulina calculado para ambos grupos (p:0.010). Conclusiones: El tiempo promedio del efecto máximo de la insulina calculado fue menor al tiempo reportado en la literatura clínica de 120 minutos. El tipo de comida principal mostró una relación con el tiempo promedio del efecto máximo en ambos grupos.
Resumo:
Il diabete mellito (DM) è una delle malattie endocrine più comuni nel cane. Una volta raggiunta la diagnosi di DM, è necessario iniziare un trattamento insulinico nonché una dieta specifica, al fine di controllare i livelli di glucosio nel sangue e di conseguenza i segni clinici. Inoltre, al fine di ottenere un buon controllo glicemico, è essenziale garantire uno stretto monitoraggio terapeutico. Nella presente tesi sono riportati numerosi studi relativi a trattamento, monitoraggio e prognosi dei cani con DM. Il capitolo 2 è una review che illustra i principali aspetti terapeutici e di monitoraggio del DM. Il capitolo 3 riporta uno studio che confronta l'efficacia e la sicurezza dell'insulina Lenta e dell'insulina Neutra Protamine Hagedorn (NPH). I metodi di monitoraggio per cani con DM possono essere classificati in diretti od indiretti. I metodi di monitoraggio diretto includono misurazioni serali della glicemia o monitoraggio continuo del glucosio interstiziale tramite appositi dispositivi (Continuous Glucose Monitoring System, CGMS). Le modalità indirette comprendono la valutazione dell'assunzione di acqua e del peso corporeo, la quantificazione del glucosio/chetoni nelle urine e la misurazione delle concentrazioni di proteine glicate. Il capitolo 4 mostra uno studio volto a valutare l'accuratezza e la precisione di un glucometro e un glucometro/chetometro nel cane. Il Flash Glucose Monitoring system è un CGMS recentemente validato per l'uso nel cane; la sua utilità clinica nel monitoraggio del DM canino è esaminata nel capitolo 5. Il capitolo 6 descrive uno studio in cui si validano 2 metodi analitici per la misurazione delle fruttosamine sieriche e dell'emoglobina glicata nel cane e confronta l’utilità delle due proteine glicate nel definire il controllo glicemico. Infine, il capitolo 7 riporta uno studio finalizzato a determinare il tempo di sopravvivenza e ad identificare il valore prognostico di diverse variabili cliniche e clinico-patologiche nei cani con DM.
Resumo:
The enhanced production of strange hadrons in heavy-ion collisions relative to that in minimum-bias pp collisions is historically considered one of the first signatures of the formation of a deconfined quark-gluon plasma. At the LHC, the ALICE experiment observed that the ratio of strange to non-strange hadron yields increases with the charged-particle multiplicity at midrapidity, starting from pp collisions and evolving smoothly across interaction systems and energies, ultimately reaching Pb-Pb collisions. The understanding of the origin of this effect in small systems remains an open question. This thesis presents a comprehensive study of the production of $K^{0}_{S}$, $\Lambda$ ($\bar{\Lambda}$) and $\Xi^{-}$ ($\bar{\Xi}^{+}$) strange hadrons in pp collisions at $\sqrt{s}$ = 13 TeV collected in LHC Run 2 with ALICE. A novel approach is exploited, introducing, for the first time, the concept of effective energy in the study of strangeness production in hadronic collisions at the LHC. In this work, the ALICE Zero Degree Calorimeters are used to measure the energy carried by forward emitted baryons in pp collisions, which reduces the effective energy available for particle production with respect to the nominal centre-of-mass energy. The results presented in this thesis provide new insights into the interplay, for strangeness production, between the initial stages of the collision and the produced final hadronic state. Finally, the first Run 3 results on the production of $\Omega^{\pm}$ ($\bar{\Omega}^{+}$) multi-strange baryons are presented, measured in pp collisions at $\sqrt{s}$ = 13.6 TeV and 900 GeV, the highest and lowest collision energies reached so far at the LHC. This thesis also presents the development and validation of the ALICE Time-Of-Flight (TOF) data quality monitoring system for LHC Run 3. This work was fundamental to assess the performance of the TOF detector during the commissioning phase, in the Long Shutdown 2, and during the data taking period.
Resumo:
This work presents the case of the San Lorenzo road tunnel, a transportation infrastructure located in the northern part of Italy, involved in the so-called Passo della Morte landslide. This tunnel crosses a large rockslide characterized by slow movements. Damages like water seepage inside the tunnel and concrete lining detachments have surfaced through the years, increasing the risk. This work develops the objective of tracing back the landslide-induced stresses directly responsible for the cracks’ pattern on the most damaged segments of the tunnel. The first section of this work gives information about the global framework: site geography and its strategic relevance, geological setting, hydrological and climate conditions will be provided. The road tunnel infrastructure and its interaction with the landslide phenomena will be discussed together with the active monitoring system, which has been working for more than 20 years. In the second part the several steps and tools used to add more details about the road damages are reported. A visualization of the actual state of the most damaged portions of the road has been reached. Then the attention has been addressed to the stresses acting on the road tunnel’s aforesaid portions, developing a FEM model of a section of the tunnel through a selected software. This latter process can be deemed as a beginning for further developments. Some preliminary results are shown to demonstrate the goodness of the assumptions made. The possible future set by this work aims at constant enlargement of information to be provided to the FEM software, and at the validation of the obtained results through the monitoring data interpretative tools.
Resumo:
A single reaction interface flow analysis (SIFA) system for the monitoring of mannitol in pharmaceutical formulations and human urine is presented. The developed approach takes advantage of the mannitol scavenger aptitude to inhibit the chemiluminescent reaction between luminol and myoglobin in the absence of H(2)O(2). The SIFA system facilitated the fully automation of the developed methodology, allowing the in-line reproducible handling of chemical species with a very short lifetime as is the case of the hydroxyl radical generated in the abovementioned luminol/myoglobin reaction. The proposed methodology allowed the determination of mannitol concentrations between 25 mmol L(-1) and 1 mol L(-1), with good precision (R.S.D. < 4.7%, n = 3) and a sampling frequency of about 60 h(-1). The procedure was applied to the determination of mannitol in pharmaceuticals and in human urine samples Without any pretreatment process. The results obtained for pharmaceutical formulations were statistically comparable to those provided by the reference method (R.D. < 4.6%); recoveries values obtained in the analysis of spiked urine samples (between 94.9 and 105.3% of the added amount) were also satisfactory. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. It provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to maintain as much as flexibility as possible while meeting specific applications requirements. EMMON has been validated through extensive analytical, simulation and experimental evaluations, including through a 300+ nodes test-bed the largest single-site WSN test-bed in Europe.
Resumo:
Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective, feasible and usable system architectures that address both functional and non-functional requirements in an integrated fashion. In this paper, we outline the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to use standard commercially-available technologies, while maintaining as much flexibility as possible to meet specific applications requirements. The EMMON architecture has been validated through extensive simulation and experimental evaluation, including a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Determining groundwater flow paths of infiltrated river water is necessary for studying biochemical processes in the riparian zone, but their characterization is complicated by strong temporal and spatial heterogeneity. We investigated to what extent repeat 3D surface electrical resistance tomography (ERT) can be used to monitor transport of a salt-tracer plume under close to natural gradient conditions. The aim is to estimate groundwater flow velocities and pathways at a site located within a riparian groundwater system adjacent to the perialpine Thur River in northeastern Switzerland. Our ERT time-lapse images provide constraints on the plume's shape, flow direction, and velocity. These images allow the movement of the plume to be followed for 35 m. Although the hydraulic gradient is only 1.43 parts per thousand, the ERT time-lapse images demonstrate that the plume's center of mass and its front propagate with velocities of 2x10(-4) m/s and 5x10(-4) m/s, respectively. These velocities are compatible with groundwater resistivity monitoring data in two observation wells 5 m from the injection well. Five additional sensors in the 5-30 m distance range did not detect the plume. Comparison of the ERT time-lapse images with a groundwater transport model and time-lapse inversions of synthetic ERT data indicate that the movement of the plume can be described for the first 6 h after injection by a uniform transport model. Subsurface heterogeneity causes a change of the plume's direction and velocity at later times. Our results demonstrate the effectiveness of using time-lapse 3D surface ERT to monitor flow pathways in a challenging perialpine environment over larger scales than is practically possible with crosshole 3D ERT.
Resumo:
Applications of genetic constructs with multiple promoters, which are fused with reporter genes and simultaneous monitoring of various events in cells, have gained special attention in recent years. Lentiviral vectors, with their distinctive characteristics, have been considered to monitor the developmental changes of cells in vitro. In this study, we constructed a novel lentiviral vector (FUM-M), containing two germ cell-specific promoters (Stra8 and c-kit), fused with ZsGreen and DsRed2 reporter genes, and evaluated its efficiency in different cells following treatments with retinoic acid and DMSO. Several cell lines (P19, GC-1 spg and HEK293T) were transduced with this vector, and functional capabilities of the promoters were verified by flow cytometry and quantitative RT-PCR. Our results indicate that FUM-M shows dynamic behavior in the presence and absence of extrinsic factors. A correlation was also observed between the function of promoters, present in the lentiviral construct and the endogenous level of the Stra8 and c-kit mRNAs in the cells. In conclusion, we recommend this strategy, which needs further optimization of the constructs, as a beneficial and practical way to screen chemical inducers involved in cellular differentiation toward germ-like cells.