876 resultados para Modeling Rapport Using Hidden Markov Models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study aims to identify the factors that influence the behavior intention to adopt an academic Information System (SIE), in an environment of mandatory use, applied in the procurement process at the Federal University of Pará (UFPA). For this, it was used a model of innovation adoption and technology acceptance (TAM), focused in attitudes and intentions regarding the behavior intention. The research was conducted a quantitative survey, through survey in a sample of 96 administrative staff of the researched institution. For data analysis, it was used structural equation modeling (SEM), using the partial least squares method (Partial Least Square PLS-PM). As to results, the constructs attitude and subjective norms were confirmed as strong predictors of behavioral intention in a pre-adoption stage. Despite the use of SIE is required, the perceived voluntariness also predicts the behavior intention. Regarding attitude, classical variables of TAM, like as ease of use and perceived usefulness, appear as the main influence of attitude towards the system. It is hoped that the results of this study may provide subsidies for more efficient management of the process of implementing systems and information technologies, particularly in public universities

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inland sand dune systems are amongst the most threatened habitat types of Europe. Affected by severe conditions, these habitats present distinct community compositions, which makes them excellent for studying possible interactions among their integrating species and the environment. We focus on understanding the distribution and cooccurrence of the species from dune plant assemblages as a key step for the adequate protection of these habitats. Using data from an extensive survey we identified the shrub species that could be considered indicators of the different xerophytic scrub dune communities in South West Portugal. Then, we modelled the responses of these species to the environmental conditions using Ecological Niche Factor Analysis. We present some preliminary results elucidating whether using species distribution models of indicator species at a regional scale is a valid approach to predict the distribution of the different types of communities inhabiting these endangered habitats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

European-wide conservation policies are based on the identification of priority habitats. However, research on conservation biogeography often relies on the results and projections of species distribution models to assess species' vulnerability to global change. We assess whether the distribution and structure of threatened communities can be predicted by the suitability of the environmental conditions for their indicator species. We present some preliminary results elucidating if using species distribution models of indicator species at a regional scale is a valid approach to predict these endangered communities. Dune plant assemblages, affected by severe conditions, are excellent models for studying possible interactions among their integrating species and the environment. We use data from an extensive survey of xerophytic inland sand dune scrub communities from Portugal, one of the most threatened habitat types of Europe. We identify indicator shrub species of different types of communities, model their geographical response to the environment, and evaluate whether the output of these niche models are able to predict the distribution of each type of community in a different region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present and evaluate a novel supervised recurrent neural network architecture, the SARASOM, based on the associative self-organizing map. The performance of the SARASOM is evaluated and compared with the Elman network as well as with a hidden Markov model (HMM) in a number of prediction tasks using sequences of letters, including some experiments with a reduced lexicon of 15 words. The results were very encouraging with the SARASOM learning better and performing with better accuracy than both the Elman network and the HMM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Dirichlet process mixture model (DPMM) is a ubiquitous, flexible Bayesian nonparametric statistical model. However, full probabilistic inference in this model is analytically intractable, so that computationally intensive techniques such as Gibbs sampling are required. As a result, DPMM-based methods, which have considerable potential, are restricted to applications in which computational resources and time for inference is plentiful. For example, they would not be practical for digital signal processing on embedded hardware, where computational resources are at a serious premium. Here, we develop a simplified yet statistically rigorous approximate maximum a-posteriori (MAP) inference algorithm for DPMMs. This algorithm is as simple as DP-means clustering, solves the MAP problem as well as Gibbs sampling, while requiring only a fraction of the computational effort. (For freely available code that implements the MAP-DP algorithm for Gaussian mixtures see http://www.maxlittle.net/.) Unlike related small variance asymptotics (SVA), our method is non-degenerate and so inherits the “rich get richer” property of the Dirichlet process. It also retains a non-degenerate closed-form likelihood which enables out-of-sample calculations and the use of standard tools such as cross-validation. We illustrate the benefits of our algorithm on a range of examples and contrast it to variational, SVA and sampling approaches from both a computational complexity perspective as well as in terms of clustering performance. We demonstrate the wide applicabiity of our approach by presenting an approximate MAP inference method for the infinite hidden Markov model whose performance contrasts favorably with a recently proposed hybrid SVA approach. Similarly, we show how our algorithm can applied to a semiparametric mixed-effects regression model where the random effects distribution is modelled using an infinite mixture model, as used in longitudinal progression modelling in population health science. Finally, we propose directions for future research on approximate MAP inference in Bayesian nonparametrics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a Markov switching unobserved component model we decompose the term premium of the North American CDX index into a permanent and a stationary component. We establish that the inversion of the CDX term premium is induced by sudden changes in the unobserved stationary component, which represents the evolution of the fundamentals underpinning the probability of default in the economy. We find evidence that the monetary policy response from the Fed during the crisis period was effective in reducing the volatility of the term premium. We also show that equity returns make a substantial contribution to the term premium over the entire sample period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this project an optimal pose selection method for the calibration of an overconstrained Cable-Driven Parallel robot is presented. This manipulator belongs to a subcategory of parallel robots, where the classic rigid "legs" are replaced by cables. Cables are flexible elements that bring advantages and disadvantages to the robot modeling. For this reason, there are many open research issues, and the calibration of geometric parameters is one of them. The identification of the geometry of a robot, in particular, is usually called Kinematic Calibration. Many methods have been proposed in the past years for the solution of the latter problem. Although these methods are based on calibration using different kinematic models, when the robot’s geometry becomes more complex, their robustness and reliability decrease. This fact makes the selection of the calibration poses more complicated. The position and the orientation of the endeffector in the workspace become important in terms of selection. Thus, in general, it is necessary to evaluate the robustness of the chosen calibration method, by means, for example, of a parameter such as the observability index. In fact, it is known from the theory, that the maximization of the above mentioned index identifies the best choice of calibration poses, and consequently, using this pose set may improve the calibration process. The objective of this thesis is to analyze optimization algorithms which aim to calculate an optimal choice of poses both in quantitative and qualitative terms. Quantitatively, because it is of fundamental importance to understand how many poses are needed. Not necessarily a greater number of poses leads to a better result. Qualitatively, because it is useful to understand if the selected combination of poses actually gives additional information in the process of the identification of the parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amphibians have been declining worldwide and the comprehension of the threats that they face could be improved by using mark-recapture models to estimate vital rates of natural populations. Recently, the consequences of marking amphibians have been under discussion and the effects of toe clipping on survival are debatable, although it is still the most common technique for individually identifying amphibians. The passive integrated transponder (PIT tag) is an alternative technique, but comparisons among marking techniques in free-ranging populations are still lacking. We compared these two marking techniques using mark-recapture models to estimate apparent survival and recapture probability of a neotropical population of the blacksmith tree frog, Hypsiboas faber. We tested the effects of marking technique and number of toe pads removed while controlling for sex. Survival was similar among groups, although slightly decreased from individuals with one toe pad removed, to individuals with two and three toe pads removed, and finally to PIT-tagged individuals. No sex differences were detected. Recapture probability slightly increased with the number of toe pads removed and was the lowest for PIT-tagged individuals. Sex was an important predictor for recapture probability, with males being nearly five times more likely to be recaptured. Potential negative effects of both techniques may include reduced locomotion and high stress levels. We recommend the use of covariates in models to better understand the effects of marking techniques on frogs. Accounting for the effect of the technique on the results should be considered, because most techniques may reduce survival. Based on our results, but also on logistical and cost issues associated with PIT tagging, we suggest the use of toe clipping with anurans like the blacksmith tree frog.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A miniaturised gas analyser is described and evaluated based on the use of a substrate-integrated hollow waveguide (iHWG) coupled to a microsized near-infrared spectrophotometer comprising a linear variable filter and an array of InGaAs detectors. This gas sensing system was applied to analyse surrogate samples of natural fuel gas containing methane, ethane, propane and butane, quantified by using multivariate regression models based on partial least square (PLS) algorithms and Savitzky-Golay 1(st) derivative data preprocessing. The external validation of the obtained models reveals root mean square errors of prediction of 0.37, 0.36, 0.67 and 0.37% (v/v), for methane, ethane, propane and butane, respectively. The developed sensing system provides particularly rapid response times upon composition changes of the gaseous sample (approximately 2 s) due the minute volume of the iHWG-based measurement cell. The sensing system developed in this study is fully portable with a hand-held sized analyser footprint, and thus ideally suited for field analysis. Last but not least, the obtained results corroborate the potential of NIR-iHWG analysers for monitoring the quality of natural gas and petrochemical gaseous products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample representativeness, and minimizing the effect of the presence of contaminants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of socioeconomic factors and self-rated oral health on children's dental health assistance was assessed. This study followed a cross-sectional design, with a multistage random sample of 792 12-year-old schoolchildren from Santa Maria, a city in southern Brazil. A dental examination provided information on the prevalence of dental caries (DMFT index). Data about the use of dental service, socioeconomic status, and self-perceived oral health were collected by means of structured interviews. These associations were assessed using Poisson regression models (prevalence ratio; 95% confidence interval). The prevalence of regular use of dental service was 47.8%. Children from low socioeconomic backgrounds and those who rated their oral health as "poor" used the service less frequently. The distribution of the kind of oral healthcare assistance used (public/private) varied across socioeconomic groups. The better-off children were less likely to have used the public service. Clinical, socioeconomic, and psychosocial factors were strong predictors for the utilization of dental care services by schoolchildren.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT AND OBJECTIVES: Osteoporosis has frequently been observed in patients with rheumatoid arthritis. The present study was undertaken in order to evaluate factors associated with osteoporosis among women with rheumatoid arthritis. DESIGN AND SETTING: Cross-sectional study, carried out in a public hospital in São Paulo. METHODS: The participants were 83 women with rheumatoid arthritis (53.7 ± 10.0 years old). Bone mineral density (BMD) and body composition were measured by dual energy X-ray absorptiometry. The patients were divided into three groups according to BMD: group 1, normal BMD (n = 24); group 2, osteopenia (n = 38); and group 3, osteoporosis (n = 21). Tests were performed to compare differences in means and correlations, with adjustments for age, duration of disease and cumulative corticosteroid. The relationships between clinical factors, physical activity score, dietary intake, body composition and biochemical parameters were analyzed using linear regression models. RESULTS: Mean calcium, vitamin D and omega-6 intakes were lower than the recommendations. Associations were found between BMD and age, disease duration, parathyroid hormone concentration and fat intake. The linear regression model showed that being older, with more years of disease and lower weight were negatively correlated with BMD [Total femur = 0.552 + 0.06 (weight) + 0.019 (total physical activity) - 0.05 (age) - 0.003 (disease duration); R² = 48.1; P < 0.001]. CONCLUSION: The present study indicates that nutritional factors and body composition are associated with bone mass in women with rheumatoid arthritis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow behavior of chocolate drinks from Cupuassu (Theobroma grandiflorum, Sterculiaceae) from instantised and normal formulation, and enriched with calcium, were studied. Flow behavior was described using common rheological models (Newton, Power Law, and Bingham plastic). Experimental results, obtained at 25 degrees C and 40 degrees C, fitted mostly the Ostwald and Bingham models, with R(2) >= 0.997. The Newtonian model has 0.886 >= R(2) >= 0.991. At 25 degrees C, as expected, viscosity of samples was higher and pseudoplasticity increased (n values were lower than 1). The spray-dryer process lead to differences of rheology of the ""chocolate"" milk drinks. The addition of microcrystalline cellulose plus calcium leads to a lower viscosity.