950 resultados para Model accuracy
Resumo:
In the presented thesis work, the meshfree method with distance fields was coupled with the lattice Boltzmann method to obtain solutions of fluid-structure interaction problems. The thesis work involved development and implementation of numerical algorithms, data structure, and software. Numerical and computational properties of the coupling algorithm combining the meshfree method with distance fields and the lattice Boltzmann method were investigated. Convergence and accuracy of the methodology was validated by analytical solutions. The research was focused on fluid-structure interaction solutions in complex, mesh-resistant domains as both the lattice Boltzmann method and the meshfree method with distance fields are particularly adept in these situations. Furthermore, the fluid solution provided by the lattice Boltzmann method is massively scalable, allowing extensive use of cutting edge parallel computing resources to accelerate this phase of the solution process. The meshfree method with distance fields allows for exact satisfaction of boundary conditions making it possible to exactly capture the effects of the fluid field on the solid structure.
Resumo:
Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as f-test is performed during each node’s split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.
Resumo:
Efficient numerical models facilitate the study and design of solid oxide fuel cells (SOFCs), stacks, and systems. Whilst the accuracy and reliability of the computed results are usually sought by researchers, the corresponding modelling complexities could result in practical difficulties regarding the implementation flexibility and computational costs. The main objective of this article is to adapt a simple but viable numerical tool for evaluation of our experimental rig. Accordingly, a model for a multi-layer SOFC surrounded by a constant temperature furnace is presented, trained and validated against experimental data. The model consists of a four-layer structure including stand, two interconnects, and PEN (Positive electrode-Electrolyte-Negative electrode); each being approximated by a lumped parameter model. The heating process through the surrounding chamber is also considered. We used a set of V-I characteristics data for parameter adjustment followed by model verification against two independent sets of data. The model results show a good agreement with practical data, offering a significant improvement compared to reduced models in which the impact of external heat loss is neglected. Furthermore, thermal analysis for adiabatic and non-adiabatic process is carried out to capture the thermal behaviour of a single cell followed by a polarisation loss assessment. Finally, model-based design of experiment is demonstrated for a case study.
Resumo:
Matrix factorization (MF) has evolved as one of the better practice to handle sparse data in field of recommender systems. Funk singular value decomposition (SVD) is a variant of MF that exists as state-of-the-art method that enabled winning the Netflix prize competition. The method is widely used with modifications in present day research in field of recommender systems. With the potential of data points to grow at very high velocity, it is prudent to devise newer methods that can handle such data accurately as well as efficiently than Funk-SVD in the context of recommender system. In view of the growing data points, I propose a latent factor model that caters to both accuracy and efficiency by reducing the number of latent features of either users or items making it less complex than Funk-SVD, where latent features of both users and items are equal and often larger. A comprehensive empirical evaluation of accuracy on two publicly available, amazon and ml-100 k datasets reveals the comparable accuracy and lesser complexity of proposed methods than Funk-SVD.
Resumo:
On most if not all evaluatively relevant dimensions such as the temperature level, taste intensity, and nutritional value of a meal, one range of adequate, positive states is framed by two ranges of inadequate, negative states, namely too much and too little. This distribution of positive and negative states in the information ecology results in a higher similarity of positive objects, people, and events to other positive stimuli as compared to the similarity of negative stimuli to other negative stimuli. In other words, there are fewer ways in which an object, a person, or an event can be positive as compared to negative. Oftentimes, there is only one way in which a stimulus can be positive (e.g., a good meal has to have an adequate temperature level, taste intensity, and nutritional value). In contrast, there are many different ways in which a stimulus can be negative (e.g., a bad meal can be too hot or too cold, too spicy or too bland, or too fat or too lean). This higher similarity of positive as compared to negative stimuli is important, as similarity greatly impacts speed and accuracy on virtually all levels of information processing, including attention, classification, categorization, judgment and decision making, and recognition and recall memory. Thus, if the difference in similarity between positive and negative stimuli is a general phenomenon, it predicts and may explain a variety of valence asymmetries in cognitive processing (e.g., positive as compared to negative stimuli are processed faster but less accurately). In my dissertation, I show that the similarity asymmetry is indeed a general phenomenon that is observed in thousands of words and pictures. Further, I show that the similarity asymmetry applies to social groups. Groups stereotyped as average on the two dimensions agency / socio-economic success (A) and conservative-progressive beliefs (B) are stereotyped as positive or high on communion (C), while groups stereotyped as extreme on A and B (e.g., managers, homeless people, punks, and religious people) are stereotyped as negative or low on C. As average groups are more similar to one another than extreme groups, according to this ABC model of group stereotypes, positive groups are mentally represented as more similar to one another than negative groups. Finally, I discuss implications of the ABC model of group stereotypes, pointing to avenues for future research on how stereotype content shapes social perception, cognition, and behavior.
Resumo:
Models based on species distributions are widely used and serve important purposes in ecology, biogeography and conservation. Their continuous predictions of environmental suitability are commonly converted into a binary classification of predicted (or potential) presences and absences, whose accuracy is then evaluated through a number of measures that have been the subject of recent reviews. We propose four additional measures that analyse observation-prediction mismatch from a different angle – namely, from the perspective of the predicted rather than the observed area – and add to the existing toolset of model evaluation methods. We explain how these measures can complete the view provided by the existing measures, allowing further insights into distribution model predictions. We also describe how they can be particularly useful when using models to forecast the spread of diseases or of invasive species and to predict modifications in species’ distributions under climate and land-use change
Resumo:
In an organisation any optimization process of its issues faces increasing challenges and requires new approaches to the organizational phenomenon. Indeed, in this work it is addressed the problematic of efficiency dynamics through intangible variables that may support a different view of the corporations. It focuses on the challenges that information management and the incorporation of context brings to competitiveness. Thus, in this work it is presented the analysis and development of an intelligent decision support system in terms of a formal agenda built on a Logic Programming based methodology to problem solving, complemented with an attitude to computing grounded on Artificial Neural Networks. The proposed model is in itself fairly precise, with an overall accuracy, sensitivity and specificity with values higher than 90 %. The proposed solution is indeed unique, catering for the explicit treatment of incomplete, unknown, or even self-contradictory information, either in a quantitative or qualitative arrangement.
Resumo:
Species distribution and ecological niche models are increasingly used in biodiversity management and conservation. However, one thing that is important but rarely done is to follow up on the predictive performance of these models over time, to check if their predictions are fulfilled and maintain accuracy, or if they apply only to the set in which they were produced. In 2003, a distribution model of the Eurasian otter (Lutra lutra) in Spain was published, based on the results of a country-wide otter survey published in 1998. This model was built with logistic regression of otter presence-absence in UTM 10 km2 cells on a diverse set of environmental, human and spatial variables, selected according to statistical criteria. Here we evaluate this model against the results of the most recent otter survey, carried out a decade later and after a significant expansion of the otter distribution area in this country. Despite the time elapsed and the evident changes in this species’ distribution, the model maintained a good predictive capacity, considering both discrimination and calibration measures. Otter distribution did not expand randomly or simply towards vicinity areas,m but specifically towards the areas predicted as most favourable by the model based on data from 10 years before. This corroborates the utility of predictive distribution models, at least in the medium term and when they are made with robust methods and relevant predictor variables.
Resumo:
We start in Chapter 2 to investigate linear matrix-valued SDEs and the Itô-stochastic Magnus expansion. The Itô-stochastic Magnus expansion provides an efficient numerical scheme to solve matrix-valued SDEs. We show convergence of the expansion up to a stopping time τ and provide an asymptotic estimate of the cumulative distribution function of τ. Moreover, we show how to apply it to solve SPDEs with one and two spatial dimensions by combining it with the method of lines with high accuracy. We will see that the Magnus expansion allows us to use GPU techniques leading to major performance improvements compared to a standard Euler-Maruyama scheme. In Chapter 3, we study a short-rate model in a Cox-Ingersoll-Ross (CIR) framework for negative interest rates. We define the short rate as the difference of two independent CIR processes and add a deterministic shift to guarantee a perfect fit to the market term structure. We show how to use the Gram-Charlier expansion to efficiently calibrate the model to the market swaption surface and price Bermudan swaptions with good accuracy. We are taking two different perspectives for rating transition modelling. In Section 4.4, we study inhomogeneous continuous-time Markov chains (ICTMC) as a candidate for a rating model with deterministic rating transitions. We extend this model by taking a Lie group perspective in Section 4.5, to allow for stochastic rating transitions. In both cases, we will compare the most popular choices for a change of measure technique and show how to efficiently calibrate both models to the available historical rating data and market default probabilities. At the very end, we apply the techniques shown in this thesis to minimize the collateral-inclusive Credit/ Debit Valuation Adjustments under the constraint of small collateral postings by using a collateral account dependent on rating trigger.
Resumo:
Cancer is a challenging disease that involves multiple types of biological interactions in different time and space scales. Often computational modelling has been facing problems that, in the current technology level, is impracticable to represent in a single space-time continuum. To handle this sort of problems, complex orchestrations of multiscale models is frequently done. PRIMAGE is a large EU project that aims to support personalized childhood cancer diagnosis and prognosis. The goal is to do so predicting the growth of the solid tumour using multiscale in-silico technologies. The project proposes an open cloud-based platform to support decision making in the clinical management of paediatric cancers. The orchestration of predictive models is in general complex and would require a software framework that support and facilitate such task. The present work, proposes the development of an updated framework, referred herein as the VPH-HFv3, as a part of the PRIMAGE project. This framework, a complete re-writing with respect to the previous versions, aims to orchestrate several models, which are in concurrent development, using an architecture as simple as possible, easy to maintain and with high reusability. This sort of problem generally requires unfeasible execution times. To overcome this problem was developed a strategy of particularisation, which maps the upper-scale model results into a smaller number and homogenisation which does the inverse way and analysed the accuracy of this approach.
Resumo:
Osteoporosis is one of the major causes of mortality among the elderly. Nowadays, areal bone mineral density (aBMD) is used as diagnostic criteria for osteoporosis; however, this is a moderate predictor of the femur fracture risk and does not capture the effect of some anatomical and physiological properties on the bone strength estimation. Data from past research suggest that most fragility femur fractures occur in patients with aBMD values outside the pathological range. Subject-specific finite element models derived from computed tomography data are considered better tools to non-invasively assess hip fracture risk. In particular, the Bologna Biomechanical Computed Tomography (BBCT) is an In Silico methodology that uses a subject specific FE model to predict bone strength. Different studies demonstrated that the modeling pipeline can increase predictive accuracy of osteoporosis detection and assess the efficacy of new antiresorptive drugs. However, one critical aspect that must be properly addressed before using the technology in the clinical practice, is the assessment of the model credibility. The aim of this study was to define and perform verification and uncertainty quantification analyses on the BBCT methodology following the risk-based credibility assessment framework recently proposed in the VV-40 standard. The analyses focused on the main verification tests used in computational solid mechanics: force and moment equilibrium check, mesh convergence analyses, mesh quality metrics study, evaluation of the uncertainties associated to the definition of the boundary conditions and material properties mapping. Results of these analyses showed that the FE model is correctly implemented and solved. The operation that mostly affect the model results is the material properties mapping step. This work represents an important step that, together with the ongoing clinical validation activities, will contribute to demonstrate the credibility of the BBCT methodology.
Resumo:
This thesis investigates if emotional states of users interacting with a virtual robot can be recognized reliably and if specific interaction strategy can change the users’ emotional state and affect users’ risk decision. For this investigation, the OpenFace [1] emotion recognition model was intended to be integrated into the Flobi [2] system, to allow the agent to be aware of the current emotional state of the user and to react appropriately. There was an open source ROS [3] bridge available online to integrate OpenFace to the Flobi simulation but it was not consistent with some other projects in Flobi distribution. Then due to technical reasons DeepFace was selected. In a human-agent interaction, the system is compared to a system without using emotion recognition. Evaluation could happen at different levels: evaluation of emotion recognition model, evaluation of the interaction strategy, and evaluation of effect of interaction on user decision. The results showed that the happy emotion induction was 58% and fear emotion induction 77% successful. Risk decision results show that: in happy induction after interaction 16.6% of participants switched to a lower risk decision and 75% of them did not change their decision and the remaining switched to a higher risk decision. In fear inducted participants 33.3% decreased risk 66.6 % did not change their decision The emotion recognition accuracy was and had bias to. The sensitivity and specificity is calculated for each emotion class. The emotion recognition model classifies happy emotions as neutral in most of the time.
Resumo:
In the industry of steelmaking, the process of galvanizing is a treatment which is applied to protect the steel from corrosion. The air knife effect (AKE) occurs when nozzles emit a steam of air on the surfaces of a steel strip to remove excess zinc from it. In our work we formalized the problem to control the AKE and we implemented, with the R&D dept.of MarcegagliaSPA, a DL model able to drive the AKE. We call it controller. It takes as input the tuple (pres and dist) to drive the mechanical nozzles towards the (c). According to the requirements we designed the structure of the network. We collected and explored the data set of the historical data of the smart factory. Finally, we designed the loss function as sum of three components: the minimization between the coating addressed by the network and the target value we want to reach; and two weighted minimization components for both pressure and distance. In our solution we construct a second module, named coating net, to predict the coating of zinc
Resumo:
The increasing number of extreme rainfall events, combined with the high population density and the imperviousness of the land surface, makes urban areas particularly vulnerable to pluvial flooding. In order to design and manage cities to be able to deal with this issue, the reconstruction of weather phenomena is essential. Among the most interesting data sources which show great potential are the observational networks of private sensors managed by citizens (crowdsourcing). The number of these personal weather stations is consistently increasing, and the spatial distribution roughly follows population density. Precisely for this reason, they perfectly suit this detailed study on the modelling of pluvial flood in urban environments. The uncertainty associated with these measurements of precipitation is still a matter of research. In order to characterise the accuracy and precision of the crowdsourced data, we carried out exploratory data analyses. A comparison between Netatmo hourly precipitation amounts and observations of the same quantity from weather stations managed by national weather services is presented. The crowdsourced stations have very good skills in rain detection but tend to underestimate the reference value. In detail, the accuracy and precision of crowd- sourced data change as precipitation increases, improving the spread going to the extreme values. Then, the ability of this kind of observation to improve the prediction of pluvial flooding is tested. To this aim, the simplified raster-based inundation model incorporated in the Saferplaces web platform is used for simulating pluvial flooding. Different precipitation fields have been produced and tested as input in the model. Two different case studies are analysed over the most densely populated Norwegian city: Oslo. The crowdsourced weather station observations, bias-corrected (i.e. increased by 25%), showed very good skills in detecting flooded areas.
Resumo:
Understanding the molecular mechanisms of oral carcinogenesis will yield important advances in diagnostics, prognostics, effective treatment, and outcome of oral cancer. Hence, in this study we have investigated the proteomic and peptidomic profiles by combining an orthotopic murine model of oral squamous cell carcinoma (OSCC), mass spectrometry-based proteomics and biological network analysis. Our results indicated the up-regulation of proteins involved in actin cytoskeleton organization and cell-cell junction assembly events and their expression was validated in human OSCC tissues. In addition, the functional relevance of talin-1 in OSCC adhesion, migration and invasion was demonstrated. Taken together, this study identified specific processes deregulated in oral cancer and provided novel refined OSCC-targeting molecules.