944 resultados para Mixing ratios
Resumo:
The generalized liquid drop model (GLDM) is extended to the region around deformed shell closure (270)Hs by taking into account the excitation energy EI+ of the residual daughter nucleus and the centrifugal potential energy V-cen(r). The branching ratios of alpha decays from the ground state of a parent nucleus to the ground state 0(+) of its deformed daughter nucleus and to the first excited state 2(+) are calculated in the framework of the GLDM. The results support the proposal that a measurement of alpha spectroscopy is a feasible method to extract information on nuclear deformation of superheavy nuclei around the deformed nucleus (270)Hs.
Resumo:
Based on the isospin- and momentum-dependent hadronic transport model IBUU04, effects of the nuclear symmetry energy on the single and double pi(-)/pi(+) ratios in central reactions of Sn-132+Sn-124 and Sn-112+Sn-112 at a beam energy of 400 MeV/nucleon are studied. It is found that around the Coulomb peak of the single pi(-)/pi(+) ratio the double pi(-)/pi(+) ratio taken from the two isotopic reactions retains about the same sensitivity to the density dependence of nuclear symmetry energy. Because the double pi(-)/pi(+) ratio can significantly reduce the systematic errors, it is thus a more effective probe for the high-density behavior of the nuclear symmetry energy.
Resumo:
Based on the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model and the scaling model according to nucleon effective mass, effects of elastic and inelastic NN scattering cross sections on pi(-)/pi(+) in the neutron-rich reaction of Ca-48 + Ca-48 at a beam energy of 400 MeV/nucleon are studied. It is found that cross-section effects of both NN elastic and inelastic scatterings affect Delta(1232), pi(-) and pi(+) production, as well as the value of pi(-)/pi(+).
Resumo:
The relative isobaric yields of fragments produced in a series of heavy-ion-induced multifragmentation reactions have been analyzed in the framework of a modified Fisher model, primarily to determine the ratio of the symmetry energy coefficient to the temperature, a(sym)/T, as a function of fragment mass A. The extracted values increase from 5 to similar to 16 as A increases from 9 to 37. These values have been compared to the results of calculations using the antisymmetrized molecular dynamics (AMD) model together with the statistical decay code GEMINI. The calculated ratios are in good agreement with those extracted from the experiment. In contrast, the values extracted from the ratios of the primary isobars from the AMD model calculation are similar to 4 to 5 and show little variation with A. This observation indicates that the value of the symmetry energy coefficient derived from final fragment observables may be significantly different than the actual value at the time of fragment formation. The experimentally observed pairing effect is also studied within the same simulations. The Coulomb coefficient is also discussed.
Resumo:
Within the framework of a nonlinear chiral Lagrangian we explore the nontrivial nature of f(0)(600) and f(0)(1370) in terms of quarkonium, tetraquark and gluonium components. The mass constraints are obtained and the strong and radiative partial widths are calculated to demonstrate and discriminate these components. The static properties of f(0)(1500) and glueball are also studied. Our results are confronted with the experimental and theoretical data available as well as the upcoming measurements. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A series of Pt/Mg-Al-O catalysts with different Mg/Al atomic ratios were prepared. The NOx storage capacities of these catalysts were measured by isothermal storage at 350 degreesC. It was found that the NOx storage capacity increased with increasing Mg/Al atomic ratios. The catalytic behaviors of Pt/Mg-Al-O and Pt/MgO were studied with storage-reduction cycles at 400 degreesC. Under oxidizing conditions, NOx concentration in the outlet gas gradually increased with time, which indicated the catalysts could store NOx effectively. After a switch from oxidizing conditions to reducing conditions, NOx desorption peak emerged immediately due to the incomplete reduction of stored NOx, which lowered the total NOx conversion. With increasing Mg/Al atomic ratio in the catalysts, NOx conversion increases. Pt/MgO has the highest NOx conversion because of its best activity in the reduction of NOx by C3H6. It seems that with an increasing amount of MgO in the catalysts, the self-poisoning of Pt-sites by adsorbed species during the reaction of NOx with C3H6 may be inhibited effectively.
Resumo:
In this paper, BPO4-xSiO(2) (X: SiO2/BPO4 molar ratio, 0-70%) and BPO4-xAl(2)O(3) (X: Al2O3/BPO4 molar ratio, 0-20%) powder samples were prepared by the Pechini-type sol-gel (PSG) process using glycerol and poly(ethylene glycol) as additives. The structure and optical properties of the resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), diffuse reflection spectra, photoluminescence (PL) excitation and emission spectra, kinetic decay, and X-ray photoelectron spectra (XPS), respectively. It was found that the Pechini-type sol-gel-derived BPO4-xSiO(2) annealed at 1000 degrees C and BPO4-xAl(2)O(3) annealed at 960 degrees C exhibited bright bluish-white emissions centered at 428 and 413 nm, respectively. The luminescence decay curve analysis indicates that each sample has two kinds of lifetimes (more than 0.4 ms and less than 10 ns) and two types of kinetic decay behaviors, which can be fitted into a double-exponential function and a single-exponential function, respectively.
Resumo:
A very simple and effective wet chemical route to direct synthesis of well-dispersed Pt nanoparticles with urchinlike morphology is proposed, which was carried out by simply mixing H2PtCl6 aqueous solution and poly(vinyl pyrrolidone) with the initial molar ratios of 1:3.5 kept constant at 30 degrees C for 3 days in the presence of formic acid. As-prepared urchinlike Pt nanostructures showed excellent electrocatalytic activity toward the reduction of dioxygen and oxidation of methanol and could be used as a promising nanoelectrocatalyst.
Resumo:
Shear may shift the phase boundary towards the homogeneous state (shear induced mixing, SIM), or in the opposite direction (shear induced demixing, SID). SIM is the typical behavior of mixtures of components of low molar mass and polymer solutions, SID can be observed with solutions of high molar mass polymers and polymer blends at higher shear rates. The typical sequence with increasing shear rate is SIM, then occurrence of an isolated additional immiscible area (SLD), melting of this island into the main miscibility gap, and finally SIM again. A three phase line originates and ends in two critical end points. Raising pressure increases the shear effects. For copolymer containing systems SID is sometimes observed at very low shear rates, preceding the just mentioned sequence of shear influences.
Resumo:
In this paper, blends of Nylon 6,6 with the liquid crystal polymer Vectra A950 are considered; specifically we focused our attention on Nylon 6,6 modifications by interchange reactions that can occur in the melt, as a function of mixing conditions and blend compositions. Two matrix samples have been used, characterised by a slightly different relative amount of amine and carboxylic end groups, being the latter predominant in both cases. The dried polymers Nylon 6,6/Vectra, combined in weight ratios between 95/5 and 50/50, were subjected to reactive blending with different methods (single-screw extruder, Brabender, pyrex reactor). Pure Nylon samples have been also investigated as reference materials. The soluble Nylon 6,6-rich fraction of each blend was separated from the insoluble Vectra-rich one and used for molecular and spectroscopic characterisations. Thermal and morphological analyses, as well as testing of tensile properties, were carried out on the blends. Evidences of the occurrence of interchange reactions are given and the most probable ones are suggested. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Phase behaviors and heats of mixing of the miscible blends of poly(ethylene oxide) (PEO) and poly(vinyl acetate) (PVAc) with different molecular weights were investigated by DSC. A method proposed by Natasohn and Ebert et al. was adopted to estimate the binodal temperatures and the enthalpies of mixing from onset temperatures and values of areas of a series of endothermic peaks (corresponding to heats of demixing), respectively, in their heating scanning thermograms obtained with different heating rates. Phase diagrams and heats of mixing of this blending system were also predicted by using Sanchez-Lacombe lattice fluid theory. A very good agreement was obtained for both. phase behaviors and heats of mixing obtained with two different methods.