981 resultados para Mixed integer nonlinear programming
Resumo:
Clustered data analysis is characterized by the need to describe both systematic variation in a mean model and cluster-dependent random variation in an association model. Marginalized multilevel models embrace the robustness and interpretations of a marginal mean model, while retaining the likelihood inference capabilities and flexible dependence structures of a conditional association model. Although there has been increasing recognition of the attractiveness of marginalized multilevel models, there has been a gap in their practical application arising from a lack of readily available estimation procedures. We extend the marginalized multilevel model to allow for nonlinear functions in both the mean and association aspects. We then formulate marginal models through conditional specifications to facilitate estimation with mixed model computational solutions already in place. We illustrate this approach on a cerebrovascular deficiency crossover trial.
Resumo:
Im operativen Betrieb einer Stückgutspeditionsanlage entscheidet der Betriebslenker bzw. der Disponent in einem ersten Schritt darüber, an welche Tore die Fahrzeuge zur Be- und Entladung andocken sollen. Darüber hinaus muss er für jede Tour ein Zeitfenster ausweisen innerhalb dessen sie das jeweilige Tor belegt. Durch die örtliche und zeitliche Fahrzeug-Tor-Zuordnung wird der für den innerbetrieblichen Umschlagprozess erforderliche Ressourcenaufwand in Form von zu fahrenden Wegstrecken oder aber Gabelstaplerstunden bestimmt. Ein Ziel der Planungsaufgabe ist somit, die Zuordnung der Fahrzeuge an die Tore so vorzunehmen, dass dabei minimale innerbetriebliche Wegstrecken entstehen. Dies führt zu einer minimalen Anzahl an benötigten Umschlagmittelressourcen. Darüber hinaus kann es aber auch zweckmäßig sein, die Fahrzeuge möglichst früh an die Tore anzudocken. Jede Tour verfügt über einen individuellen Fahrplan, der Auskunft über den Ankunftszeitpunkt sowie den Abfahrtszeitpunkt der jeweiligen Tour von der Anlage gibt. Nur innerhalb dieses Zeitfensters darf der Disponent die Tour einem der Tore zuweisen. Geschieht die Zuweisung nicht sofort nach Ankunft in der Anlage, so muss das Fahrzeug auf einer Parkfläche warten. Eine Minimierung der Wartezeiten ist wünschenswert, damit das Gelände der Anlage möglichst nicht durch zuviele Fahrzeuge gleichzeitig belastet wird. Es kann vor allem aber auch im Hinblick auf das Reservieren der Tore für zeitkritische Touren sinnvoll sein, Fahrzeuge möglichst früh abzufertigen. Am Lehrstuhl Verkehrssysteme und -logistik (VSL) der Universität Dortmund wurde die Entscheidungssituation im Rahmen eines Forschungsprojekts bei der Stiftung Industrieforschung in Anlehnung an ein zeitdiskretes Mehrgüterflussproblem mit unsplittable flow Bedingungen modelliert. Die beiden Zielsetzungen wurden dabei in einer eindimensionalen Zielfunktion integriert. Das resultierende Mixed Integer Linear Programm (MILP) wurde programmiert und für mittlere Szenarien durch Eingabe in den Optimization Solver CPlex mit dem dort implementierten exakten Branch-and-Cut Verfahren gelöst. Parallel wurde im Rahmen einer Kooperation zwischen dem Lehrstuhl VSL und dem Unternehmen hafa Docking Systems, einem der weltweit führenden Tor und Rampenhersteller, für die gleiche Planungsaufgabe ein heuristisches Scheduling Verfahren sowie ein Dispositionsleitstand namens LoadDock Navigation entwickelt. Der Dispositionsleitstand dient der optimalen Steuerung der Torbelegungen in logistischen Anlagen. In dem Leitstand wird planerische Intelligenz in Form des heuristischen Schedulingverfahrens, technische Neuerungen in der Rampentechnik in Form von Sensoren und das Expertenwissen des Disponenten in einem Tool verbunden. Das mathematische Modell sowie der Prototyp mit der integrierten Heuristik werden im Rahmen dieses Artikels vorgestellt.
Resumo:
The execution of a project requires resources that are generally scarce. Classical approaches to resource allocation assume that the usage of these resources by an individual project activity is constant during the execution of that activity; in practice, however, the project manager may vary resource usage over time within prescribed bounds. This variation gives rise to the project scheduling problem which consists in allocating the scarce resources to the project activities over time such that the project duration is minimized, the total number of resource units allocated equals the prescribed work content of each activity, and various work-content-related constraints are met. We formulate this problem for the first time as a mixed-integer linear program. Our computational results for a standard test set from the literature indicate that this model outperforms the state-of-the-art solution methods for this problem.
Resumo:
This paper deals with an event-bus tour booked by Bollywood film fans. During the tour, the participants visit selected locations of famous Bollywood films at various sites in Switzerland. Moreover, the tour includes stops for lunch and shopping. Each day, up to five buses operate the tour; for organizational reasons, two or more buses cannot stay at the same location simultaneously. The planning problem is how to compute a feasible schedule for each bus such that the total waiting time (primary objective) and the total travel time (secondary objective) are minimized. We formulate this problem as a mixed-integer linear program, and we report on computational results obtained with the Gurobi solver.
Resumo:
O problema de Planejamento da Expansão de Sistemas de Distribuição (PESD) visa determinar diretrizes para a expansão da rede considerando a crescente demanda dos consumidores. Nesse contexto, as empresas distribuidoras de energia elétrica têm o papel de propor ações no sistema de distribuição com o intuito de adequar o fornecimento da energia aos padrões exigidos pelos órgãos reguladores. Tradicionalmente considera-se apenas a minimização do custo global de investimento de planos de expansão, negligenciando-se questões de confiabilidade e robustez do sistema. Como consequência, os planos de expansão obtidos levam o sistema de distribuição a configurações que são vulneráveis a elevados cortes de carga na ocorrência de contingências na rede. Este trabalho busca a elaboração de uma metodologia para inserir questões de confiabilidade e risco ao problema PESD tradicional, com o intuito de escolher planos de expansão que maximizem a robustez da rede e, consequentemente, atenuar os danos causados pelas contingências no sistema. Formulou-se um modelo multiobjetivo do problema PESD em que se minimizam dois objetivos: o custo global (que incorpora custo de investimento, custo de manutenção, custo de operação e custo de produção de energia) e o risco de implantação de planos de expansão. Para ambos os objetivos, são formulados modelos lineares inteiros mistos que são resolvidos utilizando o solver CPLEX através do software GAMS. Para administrar a busca por soluções ótimas, optou-se por programar em linguagem C++ dois Algoritmos Evolutivos: Non-dominated Sorting Genetic Algorithm-2 (NSGA2) e Strength Pareto Evolutionary Algorithm-2 (SPEA2). Esses algoritmos mostraram-se eficazes nessa busca, o que foi constatado através de simulações do planejamento da expansão de dois sistemas testes adaptados da literatura. O conjunto de soluções encontradas nas simulações contém planos de expansão com diferentes níveis de custo global e de risco de implantação, destacando a diversidade das soluções propostas. Algumas dessas topologias são ilustradas para se evidenciar suas diferenças.
Resumo:
O objetivo do presente trabalho é a investigação e o desenvolvimento de estratégias de otimização contínua e discreta para problemas de Fluxo de Potência Ótimo (FPO), onde existe a necessidade de se considerar as variáveis de controle associadas aos taps de transformadores em-fase e chaveamentos de bancos de capacitores e reatores shunt como variáveis discretas e existe a necessidade da limitação, e/ou até mesmo a minimização do número de ações de controle. Neste trabalho, o problema de FPO será abordado por meio de três estratégias. Na primeira proposta, o problema de FPO é modelado como um problema de Programação Não Linear com Variáveis Contínuas e Discretas (PNLCD) para a minimização de perdas ativas na transmissão; são propostas três abordagens utilizando funções de discretização para o tratamento das variáveis discretas. Na segunda proposta, considera-se que o problema de FPO, com os taps de transformadores discretos e bancos de capacitores e reatores shunts fixos, possui uma limitação no número de ações de controles; variáveis binárias associadas ao número de ações de controles são tratadas por uma função quadrática. Na terceira proposta, o problema de FPO é modelado como um problema de Otimização Multiobjetivo. O método da soma ponderada e o método ε-restrito são utilizados para modificar os problemas multiobjetivos propostos em problemas mono-objetivos. As variáveis binárias associadas às ações de controles são tratadas por duas funções, uma sigmoidal e uma polinomial. Para verificar a eficácia e a robustez dos modelos e algoritmos desenvolvidos serão realizados testes com os sistemas elétricos IEEE de 14, 30, 57, 118 e 300 barras. Todos os algoritmos e modelos foram implementados em General Algebraic Modeling System (GAMS) e os solvers CONOPT, IPOPT, KNITRO e DICOPT foram utilizados na resolução dos problemas. Os resultados obtidos confirmam que as estratégias de discretização são eficientes e as propostas de modelagem para variáveis binárias permitem encontrar soluções factíveis para os problemas envolvendo as ações de controles enquanto os solvers DICOPT e KNITRO utilizados para modelar variáveis binárias não encontram soluções.
Resumo:
Physical distribution plays an imporant role in contemporary logistics management. Both satisfaction level of of customer and competitiveness of company can be enhanced if the distribution problem is solved optimally. The multi-depot vehicle routing problem (MDVRP) belongs to a practical logistics distribution problem, which consists of three critical issues: customer assignment, customer routing, and vehicle sequencing. According to the literatures, the solution approaches for the MDVRP are not satisfactory because some unrealistic assumptions were made on the first sub-problem of the MDVRP, ot the customer assignment problem. To refine the approaches, the focus of this paper is confined to this problem only. This paper formulates the customer assignment problem as a minimax-type integer linear programming model with the objective of minimizing the cycle time of the depots where setup times are explicitly considered. Since the model is proven to be MP-complete, a genetic algorithm is developed for solving the problem. The efficiency and effectiveness of the genetic algorithm are illustrated by a numerical example.
Resumo:
Purpose – This paper sets out to study a production-planning problem for printed circuit board (PCB) assembly. A PCB assembly company may have a number of assembly lines for production of several product types in large volume. Design/methodology/approach – Pure integer linear programming models are formulated for assigning the product types to assembly lines, which is the line assignment problem, with the objective of minimizing the total production cost. In this approach, unrealistic assignment, which was suffered by previous researchers, is avoided by incorporating several constraints into the model. In this paper, a genetic algorithm is developed to solve the line assignment problem. Findings – The procedure of the genetic algorithm to the problem and a numerical example for illustrating the models are provided. It is also proved that the algorithm is effective and efficient in dealing with the problem. Originality/value – This paper studies the line assignment problem arising in a PCB manufacturing company in which the production volume is high.
Resumo:
A method has been constructed for the solution of a wide range of chemical plant simulation models including differential equations and optimization. Double orthogonal collocation on finite elements is applied to convert the model into an NLP problem that is solved either by the VF 13AD package based on successive quadratic programming, or by the GRG2 package, based on the generalized reduced gradient method. This approach is termed simultaneous optimization and solution strategy. The objective functional can contain integral terms. The state and control variables can have time delays. Equalities and inequalities containing state and control variables can be included into the model as well as algebraic equations and inequalities. The maximum number of independent variables is 2. Problems containing 3 independent variables can be transformed into problems having 2 independent variables using finite differencing. The maximum number of NLP variables and constraints is 1500. The method is also suitable for solving ordinary and partial differential equations. The state functions are approximated by a linear combination of Lagrange interpolation polynomials. The control function can either be approximated by a linear combination of Lagrange interpolation polynomials or by a piecewise constant function over finite elements. The number of internal collocation points can vary by finite elements. The residual error is evaluated at arbitrarily chosen equidistant grid-points, thus enabling the user to check the accuracy of the solution between collocation points, where the solution is exact. The solution functions can be tabulated. There is an option to use control vector parameterization to solve optimization problems containing initial value ordinary differential equations. When there are many differential equations or the upper integration limit should be selected optimally then this approach should be used. The portability of the package has been addressed converting the package from V AX FORTRAN 77 into IBM PC FORTRAN 77 and into SUN SPARC 2000 FORTRAN 77. Computer runs have shown that the method can reproduce optimization problems published in the literature. The GRG2 and the VF I 3AD packages, integrated into the optimization package, proved to be robust and reliable. The package contains an executive module, a module performing control vector parameterization and 2 nonlinear problem solver modules, GRG2 and VF I 3AD. There is a stand-alone module that converts the differential-algebraic optimization problem into a nonlinear programming problem.
Resumo:
This paper investigates a cross-layer design approach for minimizing energy consumption and maximizing network lifetime (NL) of a multiple-source and single-sink (MSSS) WSN with energy constraints. The optimization problem for MSSS WSN can be formulated as a mixed integer convex optimization problem with the adoption of time division multiple access (TDMA) in medium access control (MAC) layer, and it becomes a convex problem by relaxing the integer constraint on time slots. Impacts of data rate, link access and routing are jointly taken into account in the optimization problem formulation. Both linear and planar network topologies are considered for NL maximization (NLM). With linear MSSS and planar single-source and single-sink (SSSS) topologies, we successfully use Karush-Kuhn-Tucker (KKT) optimality conditions to derive analytical expressions of the optimal NL when all nodes are exhausted simultaneously. The problem for planar MSSS topology is more complicated, and a decomposition and combination (D&C) approach is proposed to compute suboptimal solutions. An analytical expression of the suboptimal NL is derived for a small scale planar network. To deal with larger scale planar network, an iterative algorithm is proposed for the D&C approach. Numerical results show that the upper-bounds of the network lifetime obtained by our proposed optimization models are tight. Important insights into the NL and benefits of cross-layer design for WSN NLM are obtained.
Resumo:
Using a wide range of operational research (OR) optimization examples, Applied Operational Research with SAS demonstrates how the OR procedures in SAS work. The book is one of the first to extensively cover the application of SAS procedures to OR problems, such as single criterion optimization, project management decisions, printed circuit board assembly, and multiple criteria decision making. The text begins with the algorithms and methods for linear programming, integer linear programming, and goal programming models. It then describes the principles of several OR procedures in SAS. Subsequent chapters explain how to use these procedures to solve various types of OR problems. Each of these chapters describes the concept of an OR problem, presents an example of the problem, and discusses the specific procedure and its macros for the optimal solution of the problem. The macros include data handling, model building, and report writing. While primarily designed for SAS users in OR and marketing analytics, the book can also be used by readers interested in mathematical modeling techniques. By formulating the OR problems as mathematical models, the authors show how SAS can solve a variety of optimization problems.
Resumo:
This paper aims to help supply chain managers to determine the value of retailer-supplier partnership initiatives beyond information sharing (IS) according to their specific business environment under time-varying demand conditions. For this purpose, we use integer linear programming models to quantify the benefits that can be accrued by a retailer, a supplier and system as a whole from shift in inventory ownership and shift in decision-making power with that of IS. The results of a detailed numerical study pertaining to static time horizon reveal that the shift in inventory ownership provides system-wide cost benefits in specific settings. Particularly, when it induces the retailer to order larger quantities and the supplier also prefers such orders due to significantly high setup and shipment costs. We observe that the relative benefits of shift in decision-making power are always higher than the shift in inventory ownership under all the conditions. The value of the shift in decision-making power is greater than IS particularly when the variability of underlying demand is low and time-dependent variation in production cost is high. However, when the shipment cost is negligible and order issuing efficiency of the supplier is low, the cost benefits of shift in decision-making power beyond IS are not significant. © 2012 Taylor & Francis.
Resumo:
As microblog services such as Twitter become a fast and convenient communication approach, identification of trendy topics in microblog services has great academic and business value. However detecting trendy topics is very challenging due to huge number of users and short-text posts in microblog diffusion networks. In this paper we introduce a trendy topics detection system under computation and communication resource constraints. In stark contrast to retrieving and processing the whole microblog contents, we develop an idea of selecting a small set of microblog users and processing their posts to achieve an overall acceptable trendy topic coverage, without exceeding resource budget for detection. We formulate the selection operation of these subset users as mixed-integer optimization problems, and develop heuristic algorithms to compute their approximate solutions. The proposed system is evaluated with real-time test data retrieved from Sina Weibo, the dominant microblog service provider in China. It's shown that by monitoring 500 out of 1.6 million microblog users and tracking their microposts (about 15,000 daily) with our system, nearly 65% trendy topics can be detected, while on average 5 hours earlier before they appear in Sina Weibo official trends.
Resumo:
In the contemporary customer-driven supply chain, maximization of customer service plays an equally important role as minimization of costs for a company to retain and increase its competitiveness. This article develops a multiple-criteria optimization approach, combining the analytic hierarchy process (AHP) and an integer linear programming (ILP) model, to aid the design of an optimal logistics distribution network. The proposed approach outperforms traditional cost-based optimization techniques because it considers both quantitative and qualitative factors and also aims at maximizing the benefits of deliverer and customers. In the approach, the AHP is used to determine the relative importance weightings or priorities of alternative warehouses with respect to some critical customer-oriented criteria. The results of AHP prioritization are utilized as the input of the ILP model, the objective of which is to select the best warehouses at the lowest possible cost. In this article, two commercial packages are used: including Expert Choice and LINDO.
Resumo:
We consider point sets in (Z^2,n) where no three points are on a line – also called caps or arcs. For the determination of caps with maximum cardinality and complete caps with minimum cardinality we provide integer linear programming formulations and identify some values for small n.