834 resultados para Mixed Radix Conversion
Resumo:
In order to analyze the different parameters used in the interpretation of C-peptide response in a functional test, we compared a group of 26 type 1 diabetics aged 21.1 ± 8.2 years, with a diabetes duration of 7.9 ± 6.7 months, with a group of 24 non-diabetic subjects aged 25.0 ± 4.4 years. A standard mixed meal of 317 kcal was used as a stimulus. Blood sampling for C-peptide determinations was performed at regular intervals. Although all the studied C-peptide variables were significantly lower in the diabetic group (P<0.0001), some overlapping of parameters was observed between the two groups. The highest degree of overlapping was found for basal value (BV) (30.8%) and percent increase (42.31%), and the lowest for incremental area, absolute increase, peak value (PV) (3.8%), and total area (7.7%) (c2 = 31.6, P<0.0001). We did not observe a definite pattern in the time of maximum response among the 21 diabetics who showed an increase in C-peptide levels after the stimulus. In this group, however, there was a highly significant number of late responses (120 min) (c2 = 5.7, P<0.002). Although BV showed a significant correlation with PV (rS = 0.95, P<0.0001), the basal levels of C-peptide did not differentiate the groups with and without response to the stimulus. We conclude that the diabetic group studied showed delayed and reduced C-peptide responses, and that the functional test can be an important tool for the evaluation of residual ß cell function.
Resumo:
HLA class II genes are strongly associated with susceptibility and resistance to insulin-dependent diabetes mellitus (IDDM). The present study reports the HLA-DRB1 genotyping of 41 IDDM patients and 99 healthy subjects from the Southeast of Brazil (Campinas region). Both groups consisted of an ethnic mixture of Caucasian, African Negro and Amerindian origin. HLA-DRB1*03 and *04 alleles were found at significantly higher frequencies among IDDM patients compared to the controls (DRB1*03: 48.8% vs 18.2%, P<0.005, RR = 4.27; DRB1*04: 43.9% vs 15.1%, P<0.008, RR = 4.37) and were associated with a susceptibility to the disease. DRB1*03/*04 heterozygosity conferred a strong IDDM risk (RR = 5.44). In contrast, the HLA-DRB1*11 allele frequency was lower among IDDM patients (7.3% vs 26.3% in controls), but the difference was not significant. These data agree with those described for other populations and allow genetic characterization of IDDM in Brazil
Resumo:
The Kraft pulping process is the dominant chemical pulping process in the world. Roughly 195 million metric tons of black liquor are produced annually as a by-product from the Kraft pulping process. Black liquor consists of spent cooking chemicals and dissolved organics from the wood and can contain up to 0.15 wt% nitrogen on dry solids basis. The cooking chemicals from black liquor are recovered in a chemical recovery cycle. Water is evaporated in the first stage of the chemical recovery cycle, so the black liquor has a dry solids content of 65-85% prior to combustion. During combustion of black liquor, a portion of the black liquor nitrogen is volatilized, finally forming N2 or NO. The rest of the nitrogen remains in the char as char nitrogen. During char conversion, fixed carbon is burned off leaving the pulping chemicals as smelt, and the char nitrogen forms mostly smelt nitrogen (cyanate, OCN-). Smelt exits the recovery boiler and is dissolved in water. The cyanate from smelt decomposes in the presence of water, forming NH3, which causes nitrogen emissions from the rest of the chemical recovery cycle. This thesis had two focuses: firstly, to determine how the nitrogen chemistry in the recovery boiler is affected by modification of black liquor; and secondly, to find out what causes cyanate formation during thermal conversion, and which parameters affect cyanate formation and decomposition during thermal conversion of black liquor. The fate of added biosludge nitrogen in chemical recovery was determined in Paper I. The added biosludge increased the nitrogen content of black liquor. At the pulp mill, the added biosludge did not increase the NO formation in the recovery boiler, but instead increased the amount of cyanate in green liquor. The increased cyanate caused more NH3 formation, which increased the NCG boiler’s NO emissions. Laboratory-scale experiments showed an increase in both NO and cyanate formation after biosludge addition. Black liquor can be modified, for example by addition of a solid biomass to increase the energy density of black liquor, or by separation of lignin from black liquor by precipitation. The precipitated lignin can be utilized in the production of green chemicals or as a fuel. In Papers II and III, laboratory-scale experiments were conducted to determine the impact of black liquor modification on NO and cyanate formation. Removal of lignin from black liquor reduced the nitrogen content of the black liquor. In most cases NO and cyanate formation decreased with increasing lignin removal; the exception was NO formation from lignin lean soda liquors. The addition of biomass to black liquor resulted in a higher nitrogen content fuel mixture, due to the higher nitrogen content of biomass compared to black liquor. More NO and cyanate were formed from the fuel mixtures than from pure black liquor. The increased amount of formed cyanate led to the hypothesis that black liquor is catalytically active and converts a portion of the nitrogen in the mixed fuel to cyanate. The mechanism behind cyanate formation during thermal conversion of black liquor was not clear before this thesis. Paper IV studies the cyanate formation of alkali metal loaded fuels during gasification in a CO2 atmosphere. The salts K2CO3, Na2CO3, and K2SO4 all promoted char nitrogen to cyanate conversion during gasification, while KCl and CaCO3 did not. It is now assumed that cyanate is formed when alkali metal carbonate or an active intermediate of alkali metal carbonate (e.g. -CO2K) reacts with the char nitrogen forming cyanate. By testing different fuels (bark, peat, and coal), each of which had a different form of organic nitrogen, it was concluded that the form of organic nitrogen in char also has an impact on cyanate formation. Cyanate can be formed during pyrolysis of black liquor, but at temperatures 900°C or above, the formed cyanate will decompose. Cyanate formation in gasifying conditions with different levels of CO2 in the atmosphere was also studied. Most of the char nitrogen was converted to cyanate during gasification at 800-900°C in 13-50% CO2 in N2, and only 5% of the initial fuel nitrogen was converted to NO during char conversion. The formed smelt cyanate was stable at 800°C 13% CO2, while it decomposed at 900°C 13% CO2. The cyanate decomposition was faster at higher temperatures and in oxygen-containing atmospheres than in an inert atmosphere. The presence of CO2 in oxygencontaining atmospheres slowed down the decomposition of cyanate. This work will provide new information on how modification of black liquor affects the nitrogen chemistry during thermal conversion of black liquor and what causes cyanate formation during thermal conversion of black liquor. The formation and decomposition of cyanate was studied in order to provide new data, which would be useful in modeling of nitrogen chemistry in the recovery boiler.
Resumo:
Since the discovery of the up-conversion phenomenon, there has been an ever increasing interest in up-converting phosphors in which the absorption of two or more low energy photons is followed by emission of a higher energy photon. Most up-conversion luminescence materials operate by using a combination of a trivalent rare earth (lanthanide) sensitizer (e.g. Yb or Er) and an activator (e.g. Er, Ho, Tm or Pr) ion in a crystal lattice. Up-converting phosphors have a variety of potential applications as lasers and displays as well as inks for security printing (e.g. bank notes and bonds). One of the most sophisticated applications of lanthanide up-conversion luminescence is probably in medical diagnostics. However, there are some major problems in the use of photoluminescence based on the direct UV excitation in immunoassays. Human blood absorbs strongly UV radiation as well as the emission of the phosphor in the visible. A promising way to overcome the problems arising from the blood absorption is to use a long wavelength excitation and benefit from the up-conversion luminescence. Since there is practically no absorption by the whole-blood in the near IR region, it has no capability for up-conversion in the excitation wavelength region of the conventional up-converting phosphor based on the Yb3+ (sensitizer) and Er3+ (activator) combination. The aim of this work was to prepare nanocrystalline materials with high red (and green) up-conversion luminescence efficiency for use in quantitative whole-blood immunoassays. For coupling to biological compounds, nanometer-sized (crystallite size below 50 nm) up-converting phosphor particles are required. The nanocrystalline ZrO2:Yb3+,Er3+, Y2O2S:Yb3+,Er3+, NaYF4:Yb3+,Er3+ and NaRF4-NaR’F4 (R: Y, Yb, Er) materials, prepared with the combustion, sol-gel, flux, co-precipitation and solvothermal synthesis, were studied using the thermal analysis, FT-IR spectroscopy, transmission electron microscopy, EDX spectroscopy, XANES/EXAFS measurements, absorption spectroscopy, X-ray powder diffraction, as well as up-conversion and thermoluminescence spectroscopies. The effect of the impurities of the phosphors, crystallite size, as well as the crystal structure on the up-conversion luminescence intensity was analyzed. Finally, a new phenomenon, persistent up-conversion luminescence was introduced and discussed. For efficient use in bioassays, more work is needed to yield nanomaterials with smaller and more uniform crystallite sizes. Surface modifications need to be studied to improve the dispersion in water. On the other hand, further work must be carried out to optimize the persistent up-conversion luminescence of the nanomaterials to allow for their use as efficient immunoassay nanomaterials combining the advantages of both up-conversion and persistent luminescence.
Resumo:
Hydrolysis of D-valyl-L-leucyl-L-arginine p-nitroanilide (7.5-90.0 µM) by human tissue kallikrein (hK1) (4.58-5.27 nM) at pH 9.0 and 37ºC was studied in the absence and in the presence of increasing concentrations of 4-aminobenzamidine (96-576 µM), benzamidine (1.27-7.62 mM), 4-nitroaniline (16.5-66 µM) and aniline (20-50 mM). The kinetic parameters determined in the absence of inhibitors were: Km = 12.0 ± 0.8 µM and k cat = 48.4 ± 1.0 min-1. The data indicate that the inhibition of hK1 by 4-aminobenzamidine and benzamidine is linear competitive, while the inhibition by 4-nitroaniline and aniline is linear mixed, with the inhibitor being able to bind both to the free enzyme with a dissociation constant Ki yielding an EI complex, and to the ES complex with a dissociation constant Ki', yielding an ESI complex. The calculated Ki values for 4-aminobenzamidine, benzamidine, 4-nitroaniline and aniline were 146 ± 10, 1,098 ± 91, 38.6 ± 5.2 and 37,340 ± 5,400 µM, respectively. The calculated Ki' values for 4-nitroaniline and aniline were 289.3 ± 92.8 and 310,500 ± 38,600 µM, respectively. The fact that Ki'>Ki indicates that 4-nitroaniline and aniline bind to a second binding site in the enzyme with lower affinity than they bind to the active site. The data about the inhibition of hK1 by 4-aminobenzamidine and benzamidine help to explain previous observations that esters, anilides or chloromethyl ketone derivatives of Nalpha-substituted arginine are more sensitive substrates or inhibitors of hK1 than the corresponding lysine compounds.
Resumo:
Natural cell death is a well-known degenerative phenomenon occurring during development of the nervous system. The role of trophic molecules produced by target and afferent cells as well as by glial cells has been extensively demonstrated. Literature data demonstrate that cAMP can modulate the survival of neuronal cells. Cultures of mixed retinal cells were treated with forskolin (an activator of the enzyme adenylyl cyclase) for 48 h. The results show that 50 µM forskolin induced a two-fold increase in the survival of retinal ganglion cells (RGCs) in the absence of exogenous trophic factors. This effect was dose dependent and abolished by 1 µM H89 (an inhibitor of protein kinase A), 1.25 µM chelerythrine chloride (an inhibitor of protein kinase C), 50 µM PD 98059 (an inhibitor of MEK), 25 µM Ly 294002 (an inhibitor of phosphatidylinositol-3 kinase), 30 nM brefeldin A (an inhibitor of polypeptide release), and 10 µM genistein or 1 ng/ml herbimycin (inhibitors of tyrosine kinase enzymes). The inhibition of muscarinic receptors by 10 µM atropine or 1 µM telenzepine also blocked the effect of forskolin. When we used 25 µM BAPTA, an intracellular calcium chelator, as well as 20 µM 5-fluoro-2'-deoxyuridine, an inhibitor of cell proliferation, we also abolished the effect. Our results indicate that cAMP plays an important role controlling the survival of RGCs. This effect is directly dependent on M1 receptor activation indicating that cholinergic activity mediates the increase in RGC survival. We propose a model which involves cholinergic amacrine cells and glial cells in the increase of RGC survival elicited by forskolin treatment.
Resumo:
The purpose of the present study was to evaluate the mixed lymphocyte culture as a predictive assay of acute and chronic graft-versus-host disease (GVHD). We studied 153 patients who received a first bone marrow transplantation from human leukocyte antigen-identical siblings. Acute GVHD was observed in 26 of 128 (20.3%) patients evaluated and chronic GVHD occurred in 60 of 114 (52.6%). One-way mixed lymphocyte culture (MLC) assays were performed by the standard method. MLC results are reported as the relative response (RR) from donor against patient cells. The responses ranged from -47.0 to 40.7%, with a median of 0.5%. The Kaplan-Meier probability of developing GVHD was determined for patients with positive and negative MLC. There was no significant difference in incidence of acute GVHD between the groups studied. However, the incidence of chronic GVHD was higher in recipients with RR >4.5% than in those with RR <=4.5%. The Cox Proportional Hazards model was used to examine the effect of MLC levels on incidence of chronic GVHD, while adjusting for the potential confounding effect of others suspected or observed risk factors. The relative risk of chronic GVHD was 2.5 for patients with positive MLC (RR >4.5%), 2.9 for those who received peripheral blood progenitor cells as a graft, and 2.2 for patients who developed previous acute GVHD. MLC was not useful for predicting acute GVHD, but MLC with RR >4.5% associated with other risk factors could predict the development of chronic GVHD, being of help for the prevention and/or treatment of this late complication.
Resumo:
Bioenergi ses som en viktig del av det nu- och framtida sortimentet av inhemsk energi. Svartlut, bark och skogsavfall täcker mer än en femtedel av den inhemska energianvändningen. Produktionsanläggningar kan fungera ofullständigt och en mängd gas-, partikelutsläpp och tjära produceras samtidigt och kan leda till beläggningsbildning och korrosion. Orsaken till dessa problem är ofta obalans i processen: vissa föreningar anrikas i processen och superjämviktstillstånd är bildas. I denna doktorsavhandling presenteras en ny beräkningsmetod, med vilken man kan beskriva superjämviktstillståndet, de viktigaste kemiska reaktionerna, processens värmeproduktion och tillståndsstorheter samtidigt. Beräkningsmetoden grundar sig på en unik frienergimetod med bivillkor som har utvecklats vid VTT. Den här så kallade CFE-metoden har tidigare utnyttjats i pappers-, metall- och kemiindustrin. Applikationer för bioenergi, vilka är demonstrerade i doktorsavhandlingen, är ett nytt användingsområde för metoden. Studien visade att beräkningsmetoden är väl lämpad för högtemperaturenergiprocesser. Superjämviktstillstånden kan uppstå i dessa processer och det kemiska systemet kan definieras med några bivillkor. Typiska tillämpningar är förbränning av biomassa och svartlut, förgasning av biomassa och uppkomsten av kväveoxider. Också olika sätt att definiera superjämviktstillstånd presenterades i doktorsavhandlingen: empiriska konstanter, empiriska hastighetsuttryck eller reaktionsmekanismer kan användas. Resultaten av doktorsavhandlingen kan utnyttjas i framtiden i processplaneringen och i undersökning av nya tekniska lösningar för förgasning, förbränningsteknik och biobränslen. Den presenterade metoden är ett bra alternativ till de traditionella mekanistiska och fenomenmodeller och kombinerar de bästa delarna av både. --------------------------------------------------------------- Bioenergia on tärkeä osa nykyistä ja tulevaa kotimaista energiapalettia. Mustalipeä, kuori ja metsätähteet kattavat yli viidenneksen kotimaisesta energian kulutuksesta. Tuotantolaitokset eivät kuitenkaan aina toimi täydellisesti ja niiden prosesseissa syntyy erilaisia kaasu- ja hiukkaspäästöjä, tervoja sekä prosessilaitteita kuluttavia saostumia ja ruostumista. Usein syy näihin ongelmiin on prosessissa esiintyvä epätasapainotila: tietyt yhdisteet rikastuvat prosessissa ja muodostavat supertasapainotiloja. Väitöstyössä kehitettiin uusi laskentamenetelmä, jolla voidaan kuvata nämä supertasapainotilat, tärkeimmät niihin liittyvät kemialliset reaktiot, prosessin lämmöntuotanto ja tilansuureet yhtä aikaa. Laskentamenetelmä perustuu VTT:llä kehitettyyn ainutlaatuiseen rajoitettuun vapaaenergiamenetelmään. Tätä niin kutsuttua CFE-menetelmää on aiemmin sovelluttu onnistuneesti muun muassa paperi-, metalli- ja kemianteollisuudessa. Väitöstyössä esitetyt bioenergiasovellukset ovat uusi sovellusalue menetelmälle. Työ osoitti laskentatavan soveltuvan hyvin korkealämpöisiin energiatekniikan prosesseihin, joissa kemiallista systeemiä rajoittavia tekijöitä oli rajallinen määrä ja siten super-tasapainotila saattoi muodostua prosessin aikana. Tyypillisiä sovelluskohteita ovat biomassan ja mustalipeän poltto, biomassan kaasutus ja typpioksidipäästöt. Työn aikana arvioitiin myös erilaisia tapoja määritellä super-tasapainojen muodostumista rajoittavat tekijät. Rajoitukset voitiin tehdä teollisiin mittauksiin pohjautuen, kokeellisia malleja hyödyntäen tai mekanistiseen reaktiokinetiikkaan perustuen. Tulevaisuudessa väitöstyön tuloksia voidaan hyödyntää prosessisuunnittelussa ja tutkittaessa uusia teknisiä ratkaisuja kaasutus- ja polttotekniikoissa sekä biopolttoaineiden tutkimuksessa. Kehitetty menetelmä tarjoaa hyvän vaihtoehdon perinteisille mekanistisille ja ilmiömalleille yhdistäen näiden parhaita puolia.
Resumo:
Cryopreservation has an immunomodulating effect on tracheal tissue as a result of class II antigen depletion due to epithelium exfoliation. However, not all epithelium is detached. We evaluated the role of apoptosis in the remaining epithelium of 30 cryopreserved tracheal grafts. Caspase-3 immunoreactivity of tracheal epithelium was studied in canine tracheal segments cryopreserved with F12K medium, with or without subsequent storage in liquid nitrogen at -196°C for 15 days. Loss of structural integrity of tracheal mixed glands was observed in all cryopreserved tracheal segments. Caspase-3 immunoreactivity in tracheal mucosa and in mixed glands was significantly decreased, in contrast to the control group and to cryopreserved tracheal segments in which it remained high, due to the effect of storage in liquid nitrogen (P < 0.05, ANOVA and Tukey test). We conclude that apoptosis can be triggered in epithelial cells during tracheal graft harvesting even prior to cryopreservation, and although the epithelial caspase-3 immunoreactivity is reduced in tracheal cryopreservation, this could be explained by increased cell death. Apoptosis cannot be stopped during tracheal cryopreservation.
Resumo:
The conversion of p-coumaric acid, ferulic acid, and caffeic acid into 4-ethylphenol, 4-ethylguaiacol and 4-ethylcatechol was studied in Dekkera bruxellensis ISA 1791 under defined conditions in a synthetic medium and in a red wine. Liquid chromatography (HPLC-DAD) was used to quantify the phenolic acids, and gas chromatography (GC) coupled to a FID detector was used to quantify volatile phenols using a novel analytical methodology that does not require sample derivatization. Identification was achieved by gas chromatography-mass detection (GC-MS). The results show that phenolic acids concentration decreases while volatile phenols concentration increases. The proportion of caffeic acid taken up by Dekkera bruxellensis is lower than that for p-coumaric or ferulic acid; therefore less 4-ethylcatechol is formed. More important, 4-ethylcathecol synthesis by Dekkera bruxellensis in wine has never been demonstrated so far. These results contribute decisively to a better understanding of the origin of the volatile phenols in wines. The accumulation of these compounds in wine is nowadays regarded as one of the key factors of quality control.
Resumo:
The objective of this study was to add value to araça and marolo fruits by developing jams and verifying changes in their physical, chemical, and microbiological parameters during storage. The analyses were carried out every 2 months. From the results, it was shown that the levels of moisture (35.89 - 26.34%), lipids (0.43 - 0.27%), sucrose (30.62 - 28.98%), total pectin (0.83 - 0.50%), soluble pectin (0.52 - 0.38%), total phenolic compounds (180.31 - 135.52 mg.GAE 100 g-1), and organic acids (401.1 - 68.5 µg.g-1 citric acid) decreased during storage. However, the levels of protein (0.83 - 0.95%), carbohydrate (62.52 - 72.5%, calories (257,11 - 295,931 kcal), fiber (0.72 - 1.4%), total soluble sugar (62.52 - 70.44%), reducing sugar (32.05 - 41.41%), soluble solids (68.4 - 72.18 °Brix), consistency (0.33 - 0.44 N), total antioxidant potential (11.3 - 22.63%), and color (a* 7.56 - 9.49, and b* 8.63 - 10.49) increased during 1-year storage. The quality of the fruit jams studied was in accordance with the microbiological standards established by the Brazilian legislation. It was concluded that the mixed araça and marolo jam can be stored for 1 year without the addition of additives.