954 resultados para Minor Variance
Resumo:
Fragmente der Blätter 27 und 31; bibliograph. Nachweis: Wilhelm Ludwig Schreiber: Handbuch der Holz- und Metallschnitte des XV. Jahrhunderts, Bd. 6, Leipzig 1928, S. 56, Nr. 2992.
Resumo:
Von Hans Albrecht
Resumo:
Von Dr. G. Korff
Resumo:
nur Bl. 7 vorhanden
Resumo:
Vorbesitzer: Dominikanerkloster Frankfurt am Main
Resumo:
Vorbesitzer: Stadtarchiv Frankfurt am Main
Resumo:
R. Anheisser
Resumo:
AR
Resumo:
Although many family-based genetic studies have collected dietary data, very few have used the dietary information in published findings. No single solution has been presented or discussed in the literature to deal with the problem of using factor analyses for the analyses of dietary data from several related individuals from a given household. The standard statistical approach of factor analysis cannot be applied to the VIVA LA FAMILIA Study diet data to ascertain dietary patterns since this population consists of three children from each family, thus the dietary patterns of the related children may be correlated and non-independent. Addressing this problem in this project will enable us to describe the dietary patterns in Hispanic families and to explore the relationships between dietary patterns and childhood obesity. ^ In the VIVA LA FAMILIA Study, an overweight child was first identified and then his/her siblings and parents were brought in for data collection which included 24 hour recalls and food frequency questionnaire (FFQ). Dietary intake data were collected using FFQ and 24 hour recalls on 1030 Hispanic children from 319 families. ^ The design of the VIVA LA FAMILIA Study has important and unique statistical considerations since its participants are related to each other, the majority form distinct nuclear families. Thus, the standard approach of factor analysis cannot be applied to these diet data to ascertain dietary patterns. In this project we propose to investigate whether the determinants of the correlation matrix of each family unit will allow us to adjust the original correlation matrix of the dietary intake data prior to ascertaining dietary intake patterns. If these methods are appropriate, then in the future the dietary patterns among related individuals could be assessed by standard orthogonal principal component factor analysis.^
Resumo:
The electroencephalogram (EEG) is a physiological time series that measures electrical activity at different locations in the brain, and plays an important role in epilepsy research. Exploring the variance and/or volatility may yield insights for seizure prediction, seizure detection and seizure propagation/dynamics.^ Maximal Overlap Discrete Wavelet Transforms (MODWTs) and ARMA-GARCH models were used to determine variance and volatility characteristics of 66 channels for different states of an epileptic EEG – sleep, awake, sleep-to-awake and seizure. The wavelet variances, changes in wavelet variances and volatility half-lives for the four states were compared for possible differences between seizure and non-seizure channels.^ The half-lives of two of the three seizure channels were found to be shorter than all of the non-seizure channels, based on 95% CIs for the pre-seizure and awake signals. No discernible patterns were found the wavelet variances of the change points for the different signals. ^
Resumo:
My dissertation focuses on developing methods for gene-gene/environment interactions and imprinting effect detections for human complex diseases and quantitative traits. It includes three sections: (1) generalizing the Natural and Orthogonal interaction (NOIA) model for the coding technique originally developed for gene-gene (GxG) interaction and also to reduced models; (2) developing a novel statistical approach that allows for modeling gene-environment (GxE) interactions influencing disease risk, and (3) developing a statistical approach for modeling genetic variants displaying parent-of-origin effects (POEs), such as imprinting. In the past decade, genetic researchers have identified a large number of causal variants for human genetic diseases and traits by single-locus analysis, and interaction has now become a hot topic in the effort to search for the complex network between multiple genes or environmental exposures contributing to the outcome. Epistasis, also known as gene-gene interaction is the departure from additive genetic effects from several genes to a trait, which means that the same alleles of one gene could display different genetic effects under different genetic backgrounds. In this study, we propose to implement the NOIA model for association studies along with interaction for human complex traits and diseases. We compare the performance of the new statistical models we developed and the usual functional model by both simulation study and real data analysis. Both simulation and real data analysis revealed higher power of the NOIA GxG interaction model for detecting both main genetic effects and interaction effects. Through application on a melanoma dataset, we confirmed the previously identified significant regions for melanoma risk at 15q13.1, 16q24.3 and 9p21.3. We also identified potential interactions with these significant regions that contribute to melanoma risk. Based on the NOIA model, we developed a novel statistical approach that allows us to model effects from a genetic factor and binary environmental exposure that are jointly influencing disease risk. Both simulation and real data analyses revealed higher power of the NOIA model for detecting both main genetic effects and interaction effects for both quantitative and binary traits. We also found that estimates of the parameters from logistic regression for binary traits are no longer statistically uncorrelated under the alternative model when there is an association. Applying our novel approach to a lung cancer dataset, we confirmed four SNPs in 5p15 and 15q25 region to be significantly associated with lung cancer risk in Caucasians population: rs2736100, rs402710, rs16969968 and rs8034191. We also validated that rs16969968 and rs8034191 in 15q25 region are significantly interacting with smoking in Caucasian population. Our approach identified the potential interactions of SNP rs2256543 in 6p21 with smoking on contributing to lung cancer risk. Genetic imprinting is the most well-known cause for parent-of-origin effect (POE) whereby a gene is differentially expressed depending on the parental origin of the same alleles. Genetic imprinting affects several human disorders, including diabetes, breast cancer, alcoholism, and obesity. This phenomenon has been shown to be important for normal embryonic development in mammals. Traditional association approaches ignore this important genetic phenomenon. In this study, we propose a NOIA framework for a single locus association study that estimates both main allelic effects and POEs. We develop statistical (Stat-POE) and functional (Func-POE) models, and demonstrate conditions for orthogonality of the Stat-POE model. We conducted simulations for both quantitative and qualitative traits to evaluate the performance of the statistical and functional models with different levels of POEs. Our results showed that the newly proposed Stat-POE model, which ensures orthogonality of variance components if Hardy-Weinberg Equilibrium (HWE) or equal minor and major allele frequencies is satisfied, had greater power for detecting the main allelic additive effect than a Func-POE model, which codes according to allelic substitutions, for both quantitative and qualitative traits. The power for detecting the POE was the same for the Stat-POE and Func-POE models under HWE for quantitative traits.