977 resultados para Mineral law


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have characterized anapaite Ca2Fe2+(PO4)2·4(H2O), a rare Ca and Fe phosphate, using a combination of electron microscopy and vibrational spectroscopy. The mineral occurs in soils and lacustrine sediments and is usually related to the diagenetic process in phosphorous rich sediments. The phosphate anion is characterized by its Raman spectrum with an intense sharp band at 943 cm-1, attributed to the ν1 PO4 3- symmetric stretching mode. Three bands at 992, 1039 and 1071 cm-1 are attributed to ν3 PO4 3-antisymmetric stretching modes. The infrared spectrum of anapaite shows complexity with a series of overlapping bands. Water in the structure of anapaite is observed by OH stretching vibrations at 2777, 3022 and 3176 cm-1 (Raman) and 2744, 3014 and 3096 cm-1 (infrared). The position of these bands provides evidence for the strong hydrogen bonding of water in the anapaite structure and contributes to the stability of the mineral.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research was undertaken on phosphophyllite sample from the Hagendorf Süd pegmatite, Bavaria, Germany. Chemical analysis was carried out by Scanning Electron Microscope in the EDS mode and indicates a zinc and iron phosphate with partial substitution of manganese, which partially replaced iron. The calculated chemical formula of the studied sample was determined to be: Zn2(Fe0.65, Mn0.35)P1.00(PO4)2- �4(H2O). The intense Raman peak at 995 cm�1 is assigned to the m1 PO3� 4 symmetric stretching mode and the two Raman bands at 1073 and 1135 cm�1 to the m3 PO3� 4 antisymmetric stretching modes. The m4 PO3� 4 bending modes are observed at 505, 571, 592 and 653 cm�1 and the m2 PO3� 4 bending mode at 415 cm�1. The sharp Raman band at 3567 cm�1 attributed to the stretching vibration of OH units brings into question the actual formula of phosphophyllite. Vibrational spectroscopy enables an assessment of the molecular structure of phosphophyllite to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectrum of callaghanite, Cu2Mg2(CO3)(OH)6⋅2H2O, was studied and compared with published Raman spectra of azurite, malachite and hydromagnesite. Stretching and bending vibrations of carbonate and hydroxyl units and water molecules were tentatively assigned. Approximate O–H…O hydrogen bond lengths were inferred from the spectra. Because of the high content of hydroxyl ions in the crystal structure in comparison with low content of carbonate units, callaghanite should be better classified as a carbonatohydroxide than a hydroxycarbonate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The arrojadite-(KFe) mineral has been analyzed using a combination of scanning electron microscopy and a combination of Raman and infrared spectroscopy. The origin of the mineral is Rapid Creek sedimentary phosphatic iron formation, northern Yukon. The formula of the mineral was determined as K2.06Na2Ca0.89Na3.23(Fe7.82Mg4.40Mn0.78)Σ13.00Al1.44(PO4)10.85(PO3OH0.23)(OH)2. The complexity of the mineral formula is reflected in the spectroscopy. Raman bands at 975, 991 and 1005 cm−1 with shoulder bands at 951 and 1024 cm−1 are assigned to the View the MathML source ν1 symmetric stretching modes. The Raman bands at 1024, 1066, 1092, 1123, 1148 and 1187 cm−1 are assigned to the View the MathML source ν3 antisymmetric stretching modes. A series of Raman bands observed at 540, 548, 557, 583, 604, 615 and 638 cm−1 are attributed to the ν4 out of plane bending modes of the PO4 and H2PO4 units. The ν2 PO4 and H2PO4 bending modes are observed at 403, 424, 449, 463, 479 and 513 cm−1. Hydroxyl and water stretching bands are readily observed. Vibrational spectroscopy enables new information about the complex phosphate mineral arrojadite-(KFe) to be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research was done on hureaulite samples from the Cigana claim, a lithium bearing pegmatite with triphylite and spodumene. The mine is located in Conselheiro Pena, east of Minas Gerais. Chemical analysis was carried out by Electron Microprobe analysis and indicated a manganese rich phase with partial substitution of iron. The calculated chemical formula of the studied sample is: (Mn3.23, Fe1.04, Ca0.19, Mg0.13)(PO4)2.7(HPO4)2.6(OH)4.78. The Raman spectrum of hureaulite is dominated by an intense sharp band at 959 cm−1 assigned to PO stretching vibrations of HPO42− units. The Raman band at 989 cm−1 is assigned to the PO43− stretching vibration. Raman bands at 1007, 1024, 1047, and 1083 cm−1 are attributed to both the HOP and PO antisymmetric stretching vibrations of HPO42− and PO43− units. A set of Raman bands at 531, 543, 564 and 582 cm−1 are assigned to the ν4 bending modes of the HPO42− and PO43− units. Raman bands observed at 414, and 455 cm−1 are attributed to the ν2 HPO42− and PO43− units. The intense A series of Raman and infrared bands in the OH stretching region are assigned to water stretching vibrations. Based upon the position of these bands hydrogen bond distances are calculated. Hydrogen bond distances are short indicating very strong hydrogen bonding in the hureaulite structure. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral hureaulite to be understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vibrational spectroscopy enables subtle details of the molecular structure of cyrilovite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. Cyrilovite is the Fe3+ member of the wardite group. The infrared and Raman spectroscopy were applied to compare the structure of cyrilovite with that of wardite. The Raman spectrum of cyrilovite in the 800–1400 cm−1 spectral range shows two intense bands at 992 and 1055 cm−1 assigned to the ν1View the MathML source symmetric stretching vibrations. A series of low intensity bands at 1105, 1136, 1177 and 1184 cm−1 are assigned to the ν3View the MathML source antisymmetric stretching modes. The infrared spectrum of cyrilovite in the 500–1300 cm−1 shows much greater complexity than the Raman spectrum. Strong infrared bands are found at 970 and 1007 cm−1 and are attributed to the ν1View the MathML source symmetric stretching mode. Raman bands are observed at 612 and 631 cm−1 and are assigned to the ν4 out of plane bending modes of the View the MathML source unit. In the 2600–3800 cm−1 spectral range, intense Raman bands for cyrilovite are found at 3328 and 3452 cm−1 with a broad shoulder at 3194 cm−1 and are assigned to OH stretching vibrations. Sharp infrared bands are observed at 3485 and 3538 cm−1. Raman spectroscopy complimented with infrared spectroscopy has enabled the structure of cyrilovite to be ascertained and compared with that of wardite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed a frondelite mineral sample from the Cigana mine, located in the municipality of Conselheiro Pena, a well-known pegmatite in Brazil. In the Cigana pegmatite, secondary phosphates, namely eosphorite, fairfieldite, fluorapatite, frondelite, gormanite, hureaulite, lithiophilite, reddingite and vivianite are common minerals in miarolitic cavities and in massive blocks after triphylite. The chemical formula was determined as (Mn0.68, Fe0.32)(Fe3+)3,72(PO4)3.17(OH)4.99. The structure of the mineral was assessed using vibrational spectroscopy. Bands attributed to the stretching and bending modes of PO4 3- and HOPO3 3- units were identified. The observation of multiple bands supports the concept of symmetry reduction of the phosphate anion in the frondelite structure. Sharp Raman and infrared bands at 3581 cm−1 is assigned to the OH stretching vibration. Broad Raman bands at 3063, 3529 and 3365 cm−1 are attributed to water stretching vibrational modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral weloganite Na2Sr3Zr(CO3)6·3H2O has been studied by using vibrational spectroscopy and a comparison is made with the spectra of weloganite with other carbonate minerals. Weloganite is member of the mckelveyite group that includes donnayite-(Y) and mckelveyite-(Y). The Raman spectrum of weloganite is characterized by an intense band at 1082 cm−1 with shoulder bands at 1061 and 1073 cm−1, attributed to the View the MathML source symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of View the MathML source symmetric stretching vibration varies with mineral composition. The Raman bands at 1350, 1371, 1385, 1417, 1526, 1546, and 1563 cm−1 are assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for weloganite is significant in that it shows distortion of the carbonate anion in the mineral structure. The Raman band observed at 870 cm−1 is assigned to the (CO3)2− ν2 bending mode. Raman bands observed for weloganite at 679, 682, 696, 728, 736, 749, and 762 cm−1 are assigned to the (CO3)2− ν4 bending modes. A comparison of the vibrational spectra is made with that of the rare earth carbonates decrespignyite, bastnasite, hydroxybastnasite, parisite, and northupite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decision in the New South Wales Supreme Court in Boyce v McIntyre [2008] NSWSC 1218 involved determination of a number of issues relating to an assessment of costs under the Legal Profession Act 2004 (NSW). The issue of broad significance was whether a non-associated third party payer must pay the fixed fee that was agreed between the law practice and the client. The court found that the client agreement did not form the basis of assessing costs for the non-associated third party payer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral creedite is a fluorinated hydroxy hydrated sulphate of aluminium and calcium of formula Ca3Al2SO4(F,OH)·2H2O. The mineral has been studied by a combination of electron probe analysis to determine the molecular formula of the mineral and the structure assessed by vibrational spectroscopy. The spectroscopy of creedite may be compared with that of the alums. The Raman spectrum of creedite is characterised by an intense sharp band at 986 cm−1 assigned to the View the MathML source ν1 (Ag) symmetric stretching mode. Multiple bands of creedite in the antisymmetric stretching region support the concept of a reduction in symmetry of the sulphate anion. Multiple bands are also observed in the bending region with the three bands at 601, 629 and 663 cm−1 assigned to the View the MathML source ν4 (Ag) bending modes. The observation of multiple bands at 440, 457 and 483 cm−1 attributed to the View the MathML source ν2 (Bg) bending modes supports the concept that the symmetry of the sulphate is reduced by coordination to the water bonded to the Al3+ in the creedite structure. The splitting of the ν2, ν3 and ν4 modes is attributed to the reduction of symmetry of the SO4 and it is proposed that the sulphate coordinates to water in the hydrated aluminium in bidentate chelation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphate mineral leucophosphite K(Fe2)3þ(PO4)2(OH) · 2H2O has been characterized by SEM-EDS, Raman, and infrared spectro- scopic measurements. The mineral is predominantly a K and Fe phosphate with some minor substitution of Al in the Fe3þ site. Raman bands at 994 and 1058 cm-1 are assigned to the symmetric stretching modes of PO3- and HPO2- units. The Raman bands at 1104, 1135, and 1177 cm-1 are assigned to the PO3- and HPO2- antisymmetric stretching modes. Raman and infrared spectra in the 2600–3800 cm-1 region show a complex set of overlapping bands, which may be resolved into the component bands. The Raman bands observed at 3325, 3355, and 3456 cm-1 are attributed to water stretching vibrations, and in the infrared spectrum, bands at 3237, 3317, and 3453 cm-1 are assigned to water stretching bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the corporate regulation landscape, 'meta-regulation' is a comparatively new legal approach. The sketchy role of state promulgated authoritative laws in pluralized society and scepticism in corporate self-regulation's role have resulted in the development of this legal approach. It has opened up possibilities to synthesize corporate governance to add social values in corporate self-regulation. The core of this approach is the fusion of responsive and reflexive legal strategies to combine regulators and regulatees for reaching a particular goal. This paper argues that it is a potential strategy that can be successfully deployed to develop a socially responsible corporate culture for the business enterprises, so that they will be able to acquire social, environmental and ethical values in their self-regulation sustainably. Taking Bangladeshi corporate laws as an instance, this paper also evaluates the scope of incorporating this approach in laws of the least developed common law countries in general.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract An assessment of the molecular structure of carletonite a rare phyllosilicate mineral with general chemical formula given as KNa4Ca4Si8O18(CO3)4(OH,F)·H2O has been undertaken using vibrational spectroscopy. Carletonite has a complex layered structure. Within one period of c, it contains a silicate layer of composition NaKSi8O18·H2O, a carbonate layer of composition NaCO3·0.5H2O and two carbonate layers of composition NaCa2CO3(F,OH)0.5. Raman bands are observed at 1066, 1075 and 1086 cm−1. Whether these bands are due to the CO32- ν1 symmetric stretching mode or to an SiO stretching vibration is open to question. Multiple bands are observed in the 300–800 cm−1 spectral region, making the attribution of these bands difficult. Multiple water stretching and bending modes are observed showing that there is much variation in hydrogen bonding between water and the silicate and carbonate surfaces.