939 resultados para Mg-al
Resumo:
We present new Holocene century to millennial-scale proxies for the well-dated piston core MD99-2269 from Húnaflóadjúp on the North Iceland Shelf. The core is located in 365 mwd and lies close to the fluctuating boundary between Atlantic and Arctic/Polar waters. The proxies are: alkenone-based SST°C, and Mg/Ca SST°C estimates and stable d13C and d18O values on planktonic and benthic foraminifera. The data were converted to 60 yr equi-spaced time-series. Significant trends in the data were extracted using Singular Spectrum Analysis and these accounted for between 50% and 70% of the variance. A comparison between these data with previously published climate proxies from MD99-2269 was carried out on a data set which consisted of 14-variable data set covering the interval 400-9200 cal yr BP at 100 yr time steps. This analysis indicated that the 1st two PC axes accounted for 57% of the variability with high loadings clustering primarily into "nutrient" and "temperature" proxies. Clustering on the 100 yr time-series indicated major changes in environment at ~6350 and ~3450 cal yr BP, which define early, mid- and late Holocene climatic intervals. We argue that a pervasive freshwater cap during the early Holocene resulted in warm SST°s, a stratified water column, and a depleted nutrient supply. The loss of the freshwater layer in the mid-Holocene resulted in high carbonate production, and the late Holocene/neoglacial interval was marked by significantly more variable sea surface conditions.
Resumo:
Multiproxy geologic records of d18O and Mg/Ca in fossil foraminifera from sediments under the Eastern Pacific Warm Pool (EPWP) region west of Central America document variations in upper ocean temperature, pycnocline strength, and salinity (i.e., net precipitation) over the past 30 kyr. Although evident in the paleotemperature record, there is no glacial-interglacial difference in paleosalinity, suggesting that tropical hydrologic changes do not respond passively to high-latitude ice sheets and oceans. Millennial variations in paleosalinity with amplitudes as high as 4 practical salinity units occur with a dominant period of 3-5 ky during the glacial/deglacial interval and 1.0-1.5 ky during the Holocene. The amplitude of the EPWP paleosalinity changes greatly exceeds that of published Caribbean and western tropical Pacific paleosalinity records. EPWP paleosalinity changes correspond to millennial-scale climate changes in the surface and deep Atlantic and the high northern latitudes, with generally higher (lower) paleosalinity during cold (warm) events. In addition to Intertropical Convergence Zone (ITCZ) dynamics, which play an important role in tropical hydrologic variability, changes in Atlantic-Pacific moisture transport, which is closely linked to ITCZ dynamics, may also contribute to hydrologic variations in the EPWP. Calculations of interbasin salinity average and interbasin salinity contrast between the EPWP and the Caribbean help differentiate long-term changes in mean ITCZ position and Atlantic-Pacific moisture transport, respectively.
Resumo:
We present a species-specific Mg/Ca-calcification temperature calibration for Globorotalia inflata from a suite of 38 core top samples from the South Atlantic (from 8° to 49°S). G. inflata is a deep-dwelling planktonic foraminifer commonly occurring in subtropical to subpolar conditions, which qualifies it for reconstructions of the permanent thermocline. Apparent calcification depths and calcification temperatures were determined by comparing measured d18O with equilibrium d18O of calcite based on water column properties. Based on our core top samples, G. inflata apparent calcification depth is constant throughout the South Atlantic mid-latitudes with a depth of 350-400 m within the permanent thermocline. The resulting Mg/Ca-calcification temperature calibration is Mg/Ca = 0.72 +/-0.045/0.042 exp (0.076 +0.006 calcification 2 temperature) (r2 = 0.81) and covers the temperature range 3.1-16.5°C. We applied our Mg/Ca calibration to gravity core PS2495-3 from the Mid-Atlantic Ridge at ca. 41°S to test its validity by reconstructing a low-resolution record covering the last two glacial-interglacial cycles. Our paleotemperature record reveals large changes in temperature for Terminations I and II, when permanent thermocline temperature increased by as much as 8°C. The G. inflata paleotemperature record suggests that oceanic fronts repeatedly migrated over the location of site PS2495-3 during the last 160 kyr. This study shows the potential of G. inflata Mg/Ca to reconstruct paleotemperatures in the permanent thermocline.
Resumo:
Acknowledgements Fieldwork and sampling was funded by Petroleum Development Oman during S. Al Marjibis’s Ph.D. Their help is gratefully acknowledged. We also thank colleagues at the University of Aberdeen, Julie Dougans (SUERC) for assisting with stable isotope analysis and Dr. Richard Hinton (EIMF) for assistance with ion microprobe analysis. Profs. Kiessling, Tucker, Bosence, Coleman, Dr. Dickson and an anonymous reviewer are thanked for their helpful and encouraging comments.
Resumo:
A record of deep-sea calcite saturation (D[CO3**-2]), derived from X-ray computed tomography-based foraminifer dissolution index, XDX, was constructed for the past 150 ka for a core from the deep (4157 m) tropical western Indian Ocean. G. sacculifer and N. dutertrei recorded a similar dissolution history, consistent with the process of calcite compensation. Peaks in calcite saturation (~15 µmol/kg higher than the present-day value) occurred during deglaciations and early in MIS 3. Dissolution maxima coincided with transitions to colder stages. The mass record of G. sacculifer better indicated preservation than did that of N. dutertrei or G. ruber. Dissolution-corrected Mg/Ca-derived SST records, like other SST records from marginal Indian Ocean sites, showed coolest temperatures of the last 150 ka in early MIS 3, when mixed layer temperatures were ~4°C lower than present SST. Temperatures recorded by N. dutertrei showed the thermocline to be ~4°C colder in MIS 3 compared to the Holocene (8 ka B.P.).
Resumo:
Laboratory culture experiments were conducted to determine effects of seawater carbonate ion concentration ([CO32-]), and thereby calcite saturation state, on Mg and Sr incorporation into calcite of two species of shallow-water benthic foraminifera: Ammonia tepida and Heterostegina depressa. Impact on Mg and Sr incorporation by increased seawater [CO32-] and thereby higher calcite saturation state, is absent in either species. Comparison to results from a similar culturing experiment, in which calcite saturation state was varied as a function of [Ca2+], reveals that saturation state affects incorporation of Mg and Sr through calcium- rather than carbonate availability. The similarity in response by both species is surprising since the average Mg/Ca ratio is ~ 70 times higher in H. depressa than in A. tepida. Furthermore, these results suggest that the ions involved in biomineralization (i.e. Ca2+ and DIC) are processed by separate cellular transport mechanisms. The similar response of Mg and Sr incorporation in this study suggests that only differences in the Ca2+ transport mechanism affect divalent cation partitioning.
Resumo:
The delta18O values of planktonic foraminifera increased in the Caribbean by about 0.5? relative to the equatorial East Pacific values between 4.6 and 4.2 Ma as a consequence of the closure of the Central American Gateway (CAG). This increase in delta18O can be interpreted either as an increase in Caribbean sea surface (mixed layer) salinity (SSS) or as a decrease in sea surface temperatures (SST). This problem represents an ideal situation to apply the recently developed paleotemperature proxy delta44/40Ca together with Mg/Ca and d18O on the planktic foraminifer Globigerinoides sacculifer from ODP Site 999. Although differences in absolute temperature calibration of delta44/40Ca and Mg/Ca exist, the general pattern is similar indicating a SST decrease of about 2-3 8C between 4.4 and 4.3 Ma followed by an increase in the same order of magnitude between 4.3 and 4.0 Ma. Correcting the delta18O record for this temperature change and assuming that changes in global ice volume are negligible, the salinity-induced planktonic delta18O signal decreased by about 0.4? between 4.4 and 4.3 Ma and increased by about 0.9? between 4.3 and 4.0 Ma in the Caribbean. The observed temperature and salinity trends are interpreted to reflect the restricted exchange of surface water between the Caribbean and the Pacific in response to the shoaling of the Panamanian Seaway, possibly accompanied by a southward shift of the Intertropical Convergence Zone (ITCZ) between 4.4 and 4.3 Ma. Differences in Mg/Ca- and delta44/40Ca-derived temperatures can be reconciled by corrections for secular variations of the marine Mg/Ca[sw] and delta44/40Ca, a salinity effect on the Mg/Ca ratio and a constant temperature offset of ~2.5 °C between both SST proxy calibrations.
Resumo:
We report d18O and minor element (Mg/Ca, Sr/Ca) data acquired by high-resolution, in situ secondary ion mass spectrometry (SIMS) from planktic foraminiferal shells and 100-500 µm sized diagenetic crystallites recovered from a deep-sea record (ODP Site 865) of the Paleocene-Eocene thermal maximum (PETM). The d18O of crystallites (~1.2 per mil Pee Dee Belemnite (PDB)) is ~4.8 per mil higher than that of planktic foraminiferal calcite (-3.6 per mil PDB), while crystallite Mg/Ca and Sr/Ca ratios are slightly higher and substantially lower than in planktic foraminiferal calcite, respectively. The focused stratigraphic distribution of the crystallites signals an association with PETM conditions; hence, we attribute their formation to early diagenesis initially sourced by seafloor dissolution (burndown) ensued by reprecipitation at higher carbonate saturation. The Mg/Ca ratios of the crystallites are an order of magnitude lower than those predicted by inorganic precipitation experiments, which may reflect a degree of inheritance from "donor" phases of biogenic calcite that underwent solution in the sediment column. In addition, SIMS d18O and electron microprobe Mg/Ca analyses that were taken within a planktic foraminiferal shell yield parallel increases along traverses that coincide with muricae blades on the chamber wall. The parallel d18O and Mg/Ca increases indicate a diagenetic origin for the blades, but their d18O value (-0.5 per mil PDB) is lower than that of crystallites suggesting that these two phases of diagenetic carbonate formed at different times. Finally, we posit that elevated levels of early diagenesis acted in concert with sediment mixing and carbonate dissolution to attenuate the d18O decrease signaling PETM warming in "whole-shell" records published for Site 865.
Resumo:
Although millennial-scale climate variability (<10 ka) has been well studied during the last glacial cycles, little is known about this important aspect of climate in the early Pleistocene, prior to the Middle Pleistocene Transition. Here we present an early Pleistocene climate record at centennial resolution for two representative glacials (marine isotope stages (MIS) 37-41 from approximately 1235 to 1320 ka) during the "41 ka world" at Integrated Ocean Drilling Program Site U1385 (the "Shackleton Site") on the southwest Iberian margin. Millennial-scale climate variability was suppressed during interglacial periods (MIS 37, MIS 39, and MIS 41) and activated during glacial inceptions when benthic d18O exceeded 3.2 per mil. Millennial variability during glacials MIS 38 and MIS 40 closely resembled Dansgaard-Oeschger events from the last glacial (MIS 3) in amplitude, shape, and pacing. The phasing of oxygen and carbon isotope variability is consistent with an active oceanic thermal bipolar see-saw between the Northern and Southern Hemispheres during most of the prominent stadials. Surface cooling was associated with systematic decreases in benthic carbon isotopes, indicating concomitant changes in the meridional overturning circulation. A comparison to other North Atlantic records of ice rafting during the early Pleistocene suggests that freshwater forcing, as proposed for the late Pleistocene, was involved in triggering or amplifying perturbations of the North Atlantic circulation that elicited a bipolar see-saw response. Our findings support similarities in the operation of the climate system occurring on millennial time scales before and after the Middle Pleistocene Transition despite the increases in global ice volume and duration of the glacial cycles.