979 resultados para Methods : Statistical


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Correlation and regression are two of the statistical procedures most widely used by optometrists. However, these tests are often misused or interpreted incorrectly, leading to erroneous conclusions from clinical experiments. This review examines the major statistical tests concerned with correlation and regression that are most likely to arise in clinical investigations in optometry. First, the use, interpretation and limitations of Pearson's product moment correlation coefficient are described. Second, the least squares method of fitting a linear regression to data and for testing how well a regression line fits the data are described. Third, the problems of using linear regression methods in observational studies, if there are errors associated in measuring the independent variable and for predicting a new value of Y for a given X, are discussed. Finally, methods for testing whether a non-linear relationship provides a better fit to the data and for comparing two or more regression lines are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using methods of statistical physics, we study the average number and kernel size of general sparse random matrices over GF(q), with a given connectivity profile, in the thermodynamical limit of large matrices. We introduce a mapping of GF(q) matrices onto spin systems using the representation of the cyclic group of order q as the q-th complex roots of unity. This representation facilitates the derivation of the average kernel size of random matrices using the replica approach, under the replica symmetric ansatz, resulting in saddle point equations for general connectivity distributions. Numerical solutions are then obtained for particular cases by population dynamics. Similar techniques also allow us to obtain an expression for the exact and average number of random matrices for any general connectivity profile. We present numerical results for particular distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Properties of computing Boolean circuits composed of noisy logical gates are studied using the statistical physics methodology. A formula-growth model that gives rise to random Boolean functions is mapped onto a spin system, which facilitates the study of their typical behavior in the presence of noise. Bounds on their performance, derived in the information theory literature for specific gates, are straightforwardly retrieved, generalized and identified as the corresponding macroscopic phase transitions. The framework is employed for deriving results on error-rates at various function-depths and function sensitivity, and their dependence on the gate-type and noise model used. These are difficult to obtain via the traditional methods used in this field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two contrasting multivariate statistical methods, viz., principal components analysis (PCA) and cluster analysis were applied to the study of neuropathological variations between cases of Alzheimer's disease (AD). To compare the two methods, 78 cases of AD were analyzed, each characterised by measurements of 47 neuropathological variables. Both methods of analysis revealed significant variations between AD cases. These variations were related primarily to differences in the distribution and abundance of senile plaques (SP) and neurofibrillary tangles (NFT) in the brain. Cluster analysis classified the majority of AD cases into five groups which could represent subtypes of AD. However, PCA suggested that variation between cases was more continuous with no distinct subtypes. Hence, PCA may be a more appropriate method than cluster analysis in the study of neuropathological variations between AD cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inference and optimization of real-value edge variables in sparse graphs are studied using the Bethe approximation and replica method of statistical physics. Equilibrium states of general energy functions involving a large set of real edge variables that interact at the network nodes are obtained in various cases. When applied to the representative problem of network resource allocation, efficient distributed algorithms are also devised. Scaling properties with respect to the network connectivity and the resource availability are found, and links to probabilistic Bayesian approximation methods are established. Different cost measures are considered and algorithmic solutions in the various cases are devised and examined numerically. Simulation results are in full agreement with the theory. © 2007 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sparse code division multiple access (CDMA), a variation on the standard CDMA method in which the spreading (signature) matrix contains only a relatively small number of nonzero elements, is presented and analysed using methods of statistical physics. The analysis provides results on the performance of maximum likelihood decoding for sparse spreading codes in the large system limit. We present results for both cases of regular and irregular spreading matrices for the binary additive white Gaussian noise channel (BIAWGN) with a comparison to the canonical (dense) random spreading code. © 2007 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article explains first, the reasons why a knowledge of statistics is necessary and describes the role that statistics plays in an experimental investigation. Second, the normal distribution is introduced which describes the natural variability shown by many measurements in optometry and vision sciences. Third, the application of the normal distribution to some common statistical problems including how to determine whether an individual observation is a typical member of a population and how to determine the confidence interval for a sample mean is described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this second article, statistical ideas are extended to the problem of testing whether there is a true difference between two samples of measurements. First, it will be shown that the difference between the means of two samples comes from a population of such differences which is normally distributed. Second, the 't' distribution, one of the most important in statistics, will be applied to a test of the difference between two means using a simple data set drawn from a clinical experiment in optometry. Third, in making a t-test, a statistical judgement is made as to whether there is a significant difference between the means of two samples. Before the widespread use of statistical software, this judgement was made with reference to a statistical table. Even if such tables are not used, it is useful to understand their logical structure and how to use them. Finally, the analysis of data, which are known to depart significantly from the normal distribution, will be described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple regression analysis is a complex statistical method with many potential uses. It has also become one of the most abused of all statistical procedures since anyone with a data base and suitable software can carry it out. An investigator should always have a clear hypothesis in mind before carrying out such a procedure and knowledge of the limitations of each aspect of the analysis. In addition, multiple regression is probably best used in an exploratory context, identifying variables that might profitably be examined by more detailed studies. Where there are many variables potentially influencing Y, they are likely to be intercorrelated and to account for relatively small amounts of the variance. Any analysis in which R squared is less than 50% should be suspect as probably not indicating the presence of significant variables. A further problem relates to sample size. It is often stated that the number of subjects or patients must be at least 5-10 times the number of variables included in the study.5 This advice should be taken only as a rough guide but it does indicate that the variables included should be selected with great care as inclusion of an obviously unimportant variable may have a significant impact on the sample size required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The techniques associated with regression, whether linear or non-linear, are some of the most useful statistical procedures that can be applied in clinical studies in optometry. 2. In some cases, there may be no scientific model of the relationship between X and Y that can be specified in advance and the objective may be to provide a ‘curve of best fit’ for predictive purposes. In such cases, the fitting of a general polynomial type curve may be the best approach. 3. An investigator may have a specific model in mind that relates Y to X and the data may provide a test of this hypothesis. Some of these curves can be reduced to a linear regression by transformation, e.g., the exponential and negative exponential decay curves. 4. In some circumstances, e.g., the asymptotic curve or logistic growth law, a more complex process of curve fitting involving non-linear estimation will be required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The topic of this thesis is the development of knowledge based statistical software. The shortcomings of conventional statistical packages are discussed to illustrate the need to develop software which is able to exhibit a greater degree of statistical expertise, thereby reducing the misuse of statistical methods by those not well versed in the art of statistical analysis. Some of the issues involved in the development of knowledge based software are presented and a review is given of some of the systems that have been developed so far. The majority of these have moved away from conventional architectures by adopting what can be termed an expert systems approach. The thesis then proposes an approach which is based upon the concept of semantic modelling. By representing some of the semantic meaning of data, it is conceived that a system could examine a request to apply a statistical technique and check if the use of the chosen technique was semantically sound, i.e. will the results obtained be meaningful. Current systems, in contrast, can only perform what can be considered as syntactic checks. The prototype system that has been implemented to explore the feasibility of such an approach is presented, the system has been designed as an enhanced variant of a conventional style statistical package. This involved developing a semantic data model to represent some of the statistically relevant knowledge about data and identifying sets of requirements that should be met for the application of the statistical techniques to be valid. Those areas of statistics covered in the prototype are measures of association and tests of location.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This book is aimed primarily at microbiologists who are undertaking research and who require a basic knowledge of statistics to analyse their experimental data. Computer software employing a wide range of data analysis methods is widely available to experimental scientists. The availability of this software, however, makes it essential that investigators understand the basic principles of statistics. Statistical analysis of data can be complex with many different methods of approach, each of which applies in a particular experimental circumstance. Hence, it is possible to apply an incorrect statistical method to data and to draw the wrong conclusions from an experiment. The purpose of this book, which has its origin in a series of articles published in the Society for Applied Microbiology journal ‘The Microbiologist’, is an attempt to present the basic logic of statistics as clearly as possible and therefore, to dispel some of the myths that often surround the subject. The 28 ‘Statnotes’ deal with various topics that are likely to be encountered, including the nature of variables, the comparison of means of two or more groups, non-parametric statistics, analysis of variance, correlating variables, and more complex methods such as multiple linear regression and principal components analysis. In each case, the relevant statistical method is illustrated with examples drawn from experiments in microbiological research. The text incorporates a glossary of the most commonly used statistical terms and there are two appendices designed to aid the investigator in the selection of the most appropriate test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last decade has seen a considerable increase in the application of quantitative methods in the study of histological sections of brain tissue and especially in the study of neurodegenerative disease. These disorders are characterised by the deposition and aggregation of abnormal or misfolded proteins in the form of extracellular protein deposits such as senile plaques (SP) and intracellular inclusions such as neurofibrillary tangles (NFT). Quantification of brain lesions and studying the relationships between lesions and normal anatomical features of the brain, including neurons, glial cells, and blood vessels, has become an important method of elucidating disease pathogenesis. This review describes methods for quantifying the abundance of a histological feature such as density, frequency, and 'load' and the sampling methods by which quantitative measures can be obtained including plot/quadrat sampling, transect sampling, and the point-quarter method. In addition, methods for determining the spatial pattern of a histological feature, i.e., whether the feature is distributed at random, regularly, or is aggregated into clusters, are described. These methods include the use of the Poisson and binomial distributions, pattern analysis by regression, Fourier analysis, and methods based on mapped point patterns. Finally, the statistical methods available for studying the degree of spatial correlation between pathological lesions and neurons, glial cells, and blood vessels are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Citation information: Armstrong RA, Davies LN, Dunne MCM & Gilmartin B. Statistical guidelines for clinical studies of human vision. Ophthalmic Physiol Opt 2011, 31, 123-136. doi: 10.1111/j.1475-1313.2010.00815.x ABSTRACT: Statistical analysis of data can be complex and different statisticians may disagree as to the correct approach leading to conflict between authors, editors, and reviewers. The objective of this article is to provide some statistical advice for contributors to optometric and ophthalmic journals, to provide advice specifically relevant to clinical studies of human vision, and to recommend statistical analyses that could be used in a variety of circumstances. In submitting an article, in which quantitative data are reported, authors should describe clearly the statistical procedures that they have used and to justify each stage of the analysis. This is especially important if more complex or 'non-standard' analyses have been carried out. The article begins with some general comments relating to data analysis concerning sample size and 'power', hypothesis testing, parametric and non-parametric variables, 'bootstrap methods', one and two-tail testing, and the Bonferroni correction. More specific advice is then given with reference to particular statistical procedures that can be used on a variety of types of data. Where relevant, examples of correct statistical practice are given with reference to recently published articles in the optometric and ophthalmic literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An apparatus was developed to project spinning golf balls directly onto golf greens. This employed a modified baseball/practice machine with two counter-rotating pneumatic wheels. The speed of the wheels could be varied independently allowing backspin to be given to the ball. The ball was projected into a darkened enclosure where the motion of the ball before and after impacting with the turf was recorded using a still camera and a stroboscope. The resulting photographs contained successive images of the ball on a single frame of film. The apparatus was tested on eighteen golf courses resulting in 721 photographs of impacts. Statistical analysis was carried out on the results of the photographs and from this, two types of green emerged. On the first, the ball tended to rebound with topspin, while on the second, the ball retained backspin after impact if the initial backspin was greater than about 350 rads-1. Eleven tests were devised to determine the characteristics of greens and statistical techniques were used to analyse the relationships between these tests. These showed the effects of the green characteristics on ball/turf impacts. It was found that the ball retained backspin on greens that were freely drained and had less than 60% of Poa annua (annual meadow grass) in their swards. Visco-elastic models were used to simulate the impact of the ball with the turf. Impacts were simulated by considering the ball to be rigid and the turf to be a two layered system consisting of springs and dampers. The model showed good agreement with experiment and was used to simulate impacts from two different shots onto two contrasting types of green.