928 resultados para Mesh segmentation
Resumo:
During decades Distance Transforms have proven to be useful for many image processing applications, and more recently, they have started to be used in computer graphics environments. The goal of this paper is to propose a new technique based on Distance Transforms for detecting mesh elements which are close to the objects' external contour (from a given point of view), and using this information for weighting the approximation error which will be tolerated during the mesh simplification process. The obtained results are evaluated in two ways: visually and using an objective metric that measures the geometrical difference between two polygonal meshes.
Resumo:
This paper proposes a new compression algorithm for dynamic 3d meshes. In such a sequence of meshes, neighboring vertices have a strong tendency to behave similarly and the degree of dependencies between their locations in two successive frames is very large which can be efficiently exploited using a combination of Predictive and DCT coders (PDCT). Our strategy gathers mesh vertices of similar motions into clusters, establish a local coordinate frame (LCF) for each cluster and encodes frame by frame and each cluster separately. The vertices of each cluster have small variation over a time relative to the LCF. Therefore, the location of each new vertex is well predicted from its location in the previous frame relative to the LCF of its cluster. The difference between the original and the predicted local coordinates are then transformed into frequency domain using DCT. The resulting DCT coefficients are quantized and compressed with entropy coding. The original sequence of meshes can be reconstructed from only a few non-zero DCT coefficients without significant loss in visual quality. Experimental results show that our strategy outperforms or comes close to other coders.
Resumo:
Map landscape-based segmentation of the sequences of momentary potential distribution maps (42-channel recordings) into brain microstates during spontaneous brain activity was used to study brain electric field spatial effects of single doses of piracetam (2.9, 4.8, and 9.6 g Nootropil® UCB and placebo) in a double-blind study of five normal young volunteers. Four 15-second epochs were analyzed from each subject and drug condition. The most prominent class of microstates (covering 49% of the time) consisted of potential maps with a generally anterior-posterior field orientation. The map orientation of this microstate class showed an increasing clockwise deviation from the placebo condition with increasing drug doses (Fisher's probability product, p < 0.014). The results of this study suggest the use of microstate segmentation analysis for the assessment of central effects of medication in spontaneous multichannel electroencephalographic data, as a complementary approach to frequency-domain analysis.
Resumo:
Over the past several years the topics of energy consumption and energy harvesting have gained significant importance as a means for improved operation of wireless sensor and mesh networks. Energy-awareness of operation is especially relevant for application scenarios from the domain of environmental monitoring in hard to access areas. In this work we reflect upon our experiences with a real-world deployment of a wireless mesh network. In particular, a comprehensive study on energy measurements collected over several weeks during the summer and the winter period in a network deployment in the Swiss Alps is presented. Energy performance is monitored and analysed for three system components, namely, mesh node, battery and solar panel module. Our findings cover a number of aspects of energy consumption, including the amount of load consumed by a mesh node, the amount of load harvested by a solar panel module, and the dependencies between these two. With our work we aim to shed some light on energy-aware network operation and to help both users and developers in the planning and deployment of a new wireless (mesh) network for environmental research.
Resumo:
Information theory-based metric such as mutual information (MI) is widely used as similarity measurement for multimodal registration. Nevertheless, this metric may lead to matching ambiguity for non-rigid registration. Moreover, maximization of MI alone does not necessarily produce an optimal solution. In this paper, we propose a segmentation-assisted similarity metric based on point-wise mutual information (PMI). This similarity metric, termed SPMI, enhances the registration accuracy by considering tissue classification probabilities as prior information, which is generated from an expectation maximization (EM) algorithm. Diffeomorphic demons is then adopted as the registration model and is optimized in a hierarchical framework (H-SPMI) based on different levels of anatomical structure as prior knowledge. The proposed method is evaluated using Brainweb synthetic data and clinical fMRI images. Both qualitative and quantitative assessment were performed as well as a sensitivity analysis to the segmentation error. Compared to the pure intensity-based approaches which only maximize mutual information, we show that the proposed algorithm provides significantly better accuracy on both synthetic and clinical data.
Resumo:
We propose a new method for fully-automatic landmark detection and shape segmentation in X-ray images. Our algorithm works by estimating the displacements from image patches to the (unknown) landmark positions and then integrating them via voting. The fundamental contribution is that, we jointly estimate the displacements from all patches to multiple landmarks together, by considering not only the training data but also geometric constraints on the test image. The various constraints constitute a convex objective function that can be solved efficiently. Validated on three challenging datasets, our method achieves high accuracy in landmark detection, and, combined with statistical shape model, gives a better performance in shape segmentation compared to the state-of-the-art methods.
Resumo:
PURPOSE Segmentation of the proximal femur in digital antero-posterior (AP) pelvic radiographs is required to create a three-dimensional model of the hip joint for use in planning and treatment. However, manually extracting the femoral contour is tedious and prone to subjective bias, while automatic segmentation must accommodate poor image quality, anatomical structure overlap, and femur deformity. A new method was developed for femur segmentation in AP pelvic radiographs. METHODS Using manual annotations on 100 AP pelvic radiographs, a statistical shape model (SSM) and a statistical appearance model (SAM) of the femur contour were constructed. The SSM and SAM were used to segment new AP pelvic radiographs with a three-stage approach. At initialization, the mean SSM model is coarsely registered to the femur in the AP radiograph through a scaled rigid registration. Mahalanobis distance defined on the SAM is employed as the search criteria for each annotated suggested landmark location. Dynamic programming was used to eliminate ambiguities. After all landmarks are assigned, a regularized non-rigid registration method deforms the current mean shape of SSM to produce a new segmentation of proximal femur. The second and third stages are iteratively executed to convergence. RESULTS A set of 100 clinical AP pelvic radiographs (not used for training) were evaluated. The mean segmentation error was [Formula: see text], requiring [Formula: see text] s per case when implemented with Matlab. The influence of the initialization on segmentation results was tested by six clinicians, demonstrating no significance difference. CONCLUSIONS A fast, robust and accurate method for femur segmentation in digital AP pelvic radiographs was developed by combining SSM and SAM with dynamic programming. This method can be extended to segmentation of other bony structures such as the pelvis.
Resumo:
In this paper, we propose a fully automatic, robust approach for segmenting proximal femur in conventional X-ray images. Our method is based on hierarchical landmark detection by random forest regression, where the detection results of 22 global landmarks are used to do the spatial normalization, and the detection results of the 59 local landmarks serve as the image cue for instantiation of a statistical shape model of the proximal femur. To detect landmarks in both levels, we use multi-resolution HoG (Histogram of Oriented Gradients) as features which can achieve better accuracy and robustness. The efficacy of the present method is demonstrated by experiments conducted on 150 clinical x-ray images. It was found that the present method could achieve an average point-to-curve error of 2.0 mm and that the present method was robust to low image contrast, noise and occlusions caused by implants.
Resumo:
Knowledge of landmarks and contours in anteroposterior (AP) pelvis X-rays is invaluable for computer aided diagnosis, hip surgery planning and image-guided interventions. This paper presents a fully automatic and robust approach for landmarking and segmentation of both pelvis and femur in a conventional AP X-ray. Our approach is based on random forest regression and hierarchical sparse shape composition. Experiments conducted on 436 clinical AP pelvis x-rays show that our approach achieves an average point-to-curve error around 1.3 mm for femur and 2.2 mm for pelvis, both with success rates around 98%. Compared to existing methods, our approach exhibits better performance in both the robustness and the accuracy.
Resumo:
An integrated approach for multi-spectral segmentation of MR images is presented. This method is based on the fuzzy c-means (FCM) and includes bias field correction and contextual constraints over spatial intensity distribution and accounts for the non-spherical cluster's shape in the feature space. The bias field is modeled as a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of intensity are added into the FCM cost functions. To reduce the computational complexity, the contextual regularizations are separated from the clustering iterations. Since the feature space is not isotropic, distance measure adopted in Gustafson-Kessel (G-K) algorithm is used instead of the Euclidean distance, to account for the non-spherical shape of the clusters in the feature space. These algorithms are quantitatively evaluated on MR brain images using the similarity measures.
Resumo:
We present a fully automatic segmentation method for multi-modal brain tumor segmentation. The proposed generative-discriminative hybrid model generates initial tissue probabilities, which are used subsequently for enhancing the classi�cation and spatial regularization. The model has been evaluated on the BRATS2013 training set, which includes multimodal MRI images from patients with high- and low-grade gliomas. Our method is capable of segmenting the image into healthy (GM, WM, CSF) and pathological tissue (necrotic, enhancing and non-enhancing tumor, edema). We achieved state-of-the-art performance (Dice mean values of 0.69 and 0.8 for tumor subcompartments and complete tumor respectively) within a reasonable timeframe (4 to 15 minutes).
Resumo:
Intensity non-uniformity (bias field) correction, contextual constraints over spatial intensity distribution and non-spherical cluster's shape in the feature space are incorporated into the fuzzy c-means (FCM) for segmentation of three-dimensional multi-spectral MR images. The bias field is modeled by a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of either intensity or membership are added into the FCM cost functions. Since the feature space is not isotropic, distance measures, other than the Euclidean distance, are used to account for the shape and volumetric effects of clusters in the feature space. The performance of segmentation is improved by combining the adaptive FCM scheme with the criteria used in Gustafson-Kessel (G-K) and Gath-Geva (G-G) algorithms through the inclusion of the cluster scatter measure. The performance of this integrated approach is quantitatively evaluated on normal MR brain images using the similarity measures. The improvement in the quality of segmentation obtained with our method is also demonstrated by comparing our results with those produced by FSL (FMRIB Software Library), a software package that is commonly used for tissue classification.
Resumo:
BACKGROUND: Patients with peritonitis undergoing emergency laparotomy are at increased risk for postoperative open abdomen and incisional hernia. This study aimed to evaluate the outcome of prophylactic intraperitoneal mesh implantation compared with conventional abdominal wall closure in patients with peritonitis undergoing emergency laparotomy. METHOD: A matched case-control study was performed. To analyze a high-risk population for incisional hernia formation, only patients with at least two of the following risk factors were included: male sex, body mass index (BMI) >25 kg/m(2), malignant tumor, or previous abdominal incision. In 63 patients with peritonitis, a prophylactic nonabsorbable mesh was implanted intraperitoneally between 2005 and 2010. These patients were compared with 70 patients with the same risk factors and peritonitis undergoing emergency laparotomy over a 1-year period (2008) who underwent conventional abdominal closure without mesh implantation. RESULTS: Demographic parameters, including sex, age, BMI, grade of intraabdominal infection, and operating time were comparable in the two groups. Incidence of surgical site infections (SSIs) was not different between groups (61.9 vs. 60.3 %; p = 0.603). Enterocutaneous fistula occurred in three patients in the mesh group (4.8 %) and in two patients in the control group (2.9 %; p = 0.667). The incidence of incisional hernia was significantly lower in the mesh group (2/63 patients) than in the control group (20/70 patients) (3.2 vs. 28.6 %; p < 0.001). CONCLUSIONS: Prophylactic intraperitoneal mesh can be safely implanted in patients with peritonitis. It significantly reduces the incidence of incisional hernia. The incidences of SSI and enterocutaneous fistula formation were similar to those seen with conventional abdominal closure.
Resumo:
Genetic evidence has indicated that the segmentation gene runt plays a key role in regulating gene expression of the pair-rule genes hairy, even-skipped, and fushi tarazu. In contrast to other pair-rule genes, sequence data of the runt open reading frame did not reveal homologies to DNA-binding motifs of known transcriptional regulatory proteins. This thesis project examined several properties of the runt gene based on the sequence of the transcription unit, including the subcellular localization of the protein in vivo, its ability to bind DNA, and the functionality of a putative nucleotide binding domain.^ A runt-specific antibody was generated and used to demonstrate that runt is localized in the nucleus. Since the precise overlap of the pair-rule stripes is thought to be critical for the determination of cellular identity along the anterior-posterior axis, phasing of early runt expression in the blastoderm was examined with regard to the segmentation genes hairy, even-skipped, and fushi tarazu. runt was also expressed at later stages of embryogenesis, including expression in neuroblasts, and ganglion mother cells of the developing nervous system. Expression at this stage was required for the subsequent formation of specific neurons and runt was extensively expressed in the central and peripheral nervous systems.^ Several experiments were done to address the biochemical function of the runt protein. A direct interaction of runt with DNA was first examined. Although bacterial expressed runt was found to bind dsDNA-cellulose, subsequent experiments failed to detect sequence-specific interactions with DNA. Inter-species conservation of the putative nucleotide binding domain suggested that this region was functionally important, and runt protein bound a labeled ATP analog with high affinity in vitro. Finally, the effect of substitution of a critical residue of the nucleotide binding domain on runt activity was examined in vivo. Ectopic expression of the mutant protein indicated that this conserved substitution altered, but did not eliminate, runt activity as evaluated by segmentation phenotype and viability. ^
Resumo:
Previous analyses of aortic displacement and distension using computed tomography angiography (CTA) were performed on double-oblique multi-planar reformations and did not consider through-plane motion. The aim of this study was to overcome this limitation by using a novel computational approach for the assessment of thoracic aortic displacement and distension in their true four-dimensional extent. Vessel segmentation with landmark tracking was executed on CTA of 24 patients without evidence of aortic disease. Distension magnitudes and maximum displacement vectors (MDV) including their direction were analyzed at 5 aortic locations: left coronary artery (COR), mid-ascending aorta (ASC), brachiocephalic trunk (BCT), left subclavian artery (LSA), descending aorta (DES). Distension was highest for COR (2.3 ± 1.2 mm) and BCT (1.7 ± 1.1 mm) compared with ASC, LSA, and DES (p < 0.005). MDV decreased from COR to LSA (p < 0.005) and was highest for COR (6.2 ± 2.0 mm) and ASC (3.8 ± 1.9 mm). Displacement was directed towards left and anterior at COR and ASC. Craniocaudal displacement at COR and ASC was 1.3 ± 0.8 and 0.3 ± 0.3 mm. At BCT, LSA, and DES no predominant displacement direction was observable. Vessel displacement and wall distension are highest in the ascending aorta, and ascending aortic displacement is primarily directed towards left and anterior. Craniocaudal displacement remains low even close to the left cardiac ventricle.