894 resultados para Mean Field Analysis


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We use the time-dependent mean-field Cross-Pitaevskii equation to study the formation of a dynamically-stabilized dissipation managed bright soliton in a quasi-one dimensional Bose-Einstein condensate (BEC). Because of three-body recombination of bosonic atoms to molecules, atoms are lost (dissipated) from a BEC. Such dissipation leads to the decay of a BEC soliton. We demonstrate by a perturbation procedure that an alimentation of atoms from an external source to the BEC may compensate for the dissipation loss and lead to a dynamically-stabilized soliton. The result of the analytical perturbation method is in excellent agreement with mean-field numerics. It seems possible to obtain such a dynamically stabilized BEC soliton without dissipation in laboratory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present report, we review recent investigations that we have conducted on the stability of atomic condensed systems, when the two-body interaction is attractive. In particular, the dynamics that occurs in the condensate due to nonconservative terms is considered in the context of an extension of the mean-field Gross-Pitaevskii approximation. Considering the relative intensity of the nonconservative parameters, chaotic and solitonic solutions are verified. Also discussed is the possibility of a liquid-gas phase transition in the presence of positive three-body elastic collisions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamics of a nonconservative Gross-Pitaevskii equation for trapped atomic systems with attractive two-body interaction is numerically investigated, considering wide variations of the nonconservative parameters, related to atomic feeding and dissipation. We study the possible limitations of the mean-field description for an atomic condensate with attractive two-body interaction, by defining the parameter regions, where stable or unstable formation can be found. The present study is useful and timely considering the possibility of large variations of attractive two-body scattering lengths, which may be feasible in recent experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We use a time-dependent dynamical mean-field-hydrodynamic model to study the formation of fermionic bright solitons in a trapped degenerate Fermi gas mixed with a Bose-Einstein condensate in a quasi-one-dimensional cigar-shaped geometry. Due to a strong Pauli-blocking repulsion among spin-polarized fermions at short distances there cannot be bright fermionic solitons in the case of repulsive boson-fermion interactions. However, we demonstrate that stable bright fermionic solitons can be formed for a sufficiently attractive boson-fermion interaction in a boson-fermion mixture. We also consider the formation of fermionic solitons in the presence of a periodic axial optical-lattice potential. These solitons can be formed and studied in the laboratory with present technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of a sudden increase and decrease of the interatomic interaction and harmonic-oscillator trapping potential on vortices in a quasi two-dimensional rotating Bose-Einstein condensate are investigated using the mean-field Gross-Pitaevskii equation. We also study the decay of vortices when the rotation of the condensate is suddenly stopped. Upon a free expansion of a rotating BEC with vortices the radius of the vortex core increases more rapidly than the radius of the condensate. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We demonstrate the formation of bright solitons in coupled self-defocusing nonlinear Schrodinger (NLS) equation supported by attractive coupling. As an application we use a time-dependent dynamical mean-field model to study the formation of stable bright solitons in two-component repulsive Bose-Einstein condensates (BECs) supported by interspecies attraction in a quasi one-dimensional geometry. When all interactions are repulsive, there cannot be bright solitons. However, bright solitons can be formed in two-component repulsive BECs for a sufficiently attractive interspecies interaction, which induces an attractive effective interaction among bosons of same type. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Within the framework of the mean-field hydrodynamic model of a degenerate Fermi gas ( DFG), we study, by means of numerical methods and variational approximation ( VA), the formation of fundamental gap solitons ( FGSs) in a DFG ( or in a BCS superfluid generated by weak interaction between spin- up and spin- down fermions), which is trapped in a periodic optical- lattice ( OL) potential. An effectively one- dimensional ( 1D) con. guration is considered, assuming strong transverse confinement; in parallel, a proper 1D model of the DFG ( which amounts to the known quintic equation for the Tonks- Girardeau gas in the OL) is considered too. The FGSs found in the first two bandgaps of the OL- induced spectrum ( unless they are very close to edges of the gaps) feature a ( tightly bound) shape, being essentially confined to a single cell of the OL. In the second bandgap, we also find antisymmetric tightly bound subfundamental solitons ( SFSs), with zero at the midpoint. The SFSs are also confined to a single cell of the OL, but, unlike the FGSs, they are unstable. The predicted solitons, consisting of similar to 10(4) - 10(5) atoms, can be created by available experimental techniques in the DFG of Li-6 atoms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the expansion of a Bose-Einstein condensate trapped in a combined optical-lattice and axially-symmetric harmonic potential using the numerical solution of the mean-field Gross-Pitaevskii equation. First, we consider the expansion of such a condensate under the action of the optical-lattice potential alone. In this case the result of numerical simulation for the axial and radial sizes during expansion is in agreement with two experiments by Morsch et al (2002 Phys. Rev. A 66 021601(R) and 2003 Laser Phys. 13 594). Finally, we consider the expansion under the action of the harmonic potential alone. In this case the oscillation, and the disappearance and revival of the resultant interference pattern is in agreement with the experiment by Muller et al (2003 J. Opt. B: Quantum Semiclass. Opt. 5 S38).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using variational and numerical solutions of the mean-field Gross-Pitaevskii equation we show that a bright soliton can be stabilized in a trapless three-dimensional attractive Bose-Einstein condensate (BEC) by a rapid periodic temporal modulation of scattering length alone by using a Feshbach resonance. This scheme also stabilizes a rotating vortex soliton in two dimensions. Apart from possible experimental application in BEC, the present study suggests that the spatiotemporal solitons of nonlinear optics in three dimensions can also be stabilized in a layered Kerr medium with sign-changing nonlinearity along the propagation direction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We use a time-dependent dynamical mean-field-hydrodynamic model to study the formation of fermionic dark solitons in a trapped degenerate Fermi gas mixed with a Bose-Einstein condensate in a harmonic as well as a periodic optical-lattice potential. The dark soliton with a 'notch' in the probability density with a zero at the minimum is simulated numerically as a nonlinear continuation of the first vibrational excitation of the linear mean-field-hydrodynamic equations, as suggested recently for pure bosons. We study the free expansion of these dark solitons as well as the consequent increase in the size of their central notch and discuss the possibility of experimental observation of the notch after free expansion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Gamow-Teller resonance in Pb-208 is discussed in the context of a self-consistent RPA, based on the relativistic mean field theory. We inquire on the possibility of substituting the phenomenological Landau-Migdal force by a microscopic nucleon-nucleon interaction, generated from the rho-nucleon tensor coupling. The effect of this coupling turns out to be very small when the short range correlations are not taken into account, but too large when these correlations are simulated by the simple extraction of the contact terms from the resulting nucleon-nucleon interaction. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the Bose-Einstein condensation of an interacting gas with attractive interaction confined in a harmonic trap using a semiclassical two-fluid mean-field model. The condensed state is described by the converged numerical solution of the Gross-Pitaevskii equation. By solving the system of coupled equations of this model iteratively we obtain the converged results for the temperature dependencies of the condensate fraction, chemical potential, and internal energy for the Bose-Einstein condensate of Li-7 atoms. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We predict a dynamical: classical superfluid-insulator transition in a Bose-Einstein condensate (BEC) trapped in combined optical and axially symmetrical harmonic potentials initiated by the periodic modulation of the radial trapping potential. The transition is marked by a loss of phase coherence in the BEC and a subsequent destruction of the interference pattern upon free:expansion. For a weak modulation of the radial potential the phase coherence is maintained. For a stronger modulation and a longer holding time in the modulated trap, the phase coherence is destroyed thus signalling a classical superfluid-insulator transition. The results are illustrated by a complete numerical solution of the axially symmetrical mean-field Gross-Pitaevskii equation for a repulsive BEC. Suggestions for future experimentation are-made.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider a one-dimensional mean-field-hydrodynamic model of a two-component degenerate Fermi gas in an external trap, each component representing a spin state of the same atom. We demonstrate that the interconversion between them (linear coupling), imposed by a resonant electromagnetic wave, transforms the immiscible binary gas into a miscible state, if the coupling constant, kappa, exceeds a critical value, kappa(cr). The effect is predicted in a variational approximation, and confirmed by numerical solutions. Unlike the recently studied model of a binary Bose-Einsten condensate with the linear coupling, the components in the immiscible phase of the binary fermion mixture never fill two separated domains with a wall between them, but rather form antilocked (pi-phase-shifted) density waves. Another difference from the bosonic mixture is spontaneous breaking of symmetry between the two components in terms of the numbers of atoms in them, N(1) and N(2). The latter effect is characterized by the parameter nu equivalent to(N(1)-N(2))/(N(1)+N(2)) (only N(1)+N(2) is a conserved quantity), the onset of miscibility at kappa >=kappa(cr) meaning a transition to nu equivalent to 0. At kappa

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)