941 resultados para Maximum likelihood – Expectation maximization (ML-EM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study compares the precision of three image classification methods, two of remote sensing and one of geostatistics applied to areas cultivated with citrus. The 5,296.52ha area of study is located in the city of Araraquara - central region of the state of São Paulo (SP), Brazil. The multispectral image from the CCD/CBERS-2B satellite was acquired in 2009 and processed through the Geographic Information System (GIS) SPRING. Three classification methods were used, one unsupervised (Cluster), and two supervised (Indicator Kriging/IK and Maximum Likelihood/Maxver), in addition to the screen classification taken as field checking.. Reliability of classifications was evaluated by Kappa index. In accordance with the Kappa index, the Indicator kriging method obtained the highest degree of reliability for bands 2 and 4. Moreover the Cluster method applied to band 2 (green) was the best quality classification between all the methods. Indicator Kriging was the classifier that presented the citrus total area closest to the field check estimated by -3.01%, whereas Maxver overestimated the total citrus area by 42.94%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACTChanges in the frequency of occurrence of extreme weather events have been pointed out as a likely impact of global warming. In this context, this study aimed to detect climate change in series of extreme minimum and maximum air temperature of Pelotas, State of Rio Grande do Sul, (1896 - 2011) and its influence on the probability of occurrence of these variables. We used the general extreme value distribution (GEV) in its stationary and non-stationary forms. In the latter case, GEV parameters are variable over time. On the basis of goodness-of-fit tests and of the maximum likelihood method, the GEV model in which the location parameter increases over time presents the best fit of the daily minimum air temperature series. Such result describes a significant increase in the mean values of this variable, which indicates a potential reduction in the frequency of frosts. The daily maximum air temperature series is also described by a non-stationary model, whose location parameter decreases over time, and the scale parameter related to sample variance rises between the beginning and end of the series. This result indicates a drop in the mean of daily maximum air temperature values and increased dispersion of the sample data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Correlations of measures of percentages of white coat color, five measures of production and two measures of reproduction were obtained from 4293 first lactation Holsteins from eight Florida dairy farms. Percentages of white coat color were analyzed as recorded and transformed by an extension of Box-Cox procedures. Statistical analyses were by derivative-free restricted maximum likelihood (DFREML) with an animal model. Phenotypic and genetic correlations of white percentage (not transformed) were with milk yield, 0.047 and 0.097; fat yield, 0.002 and 0.004; fat percentage, -0.047 and -0.090; protein yield, 0.024 and 0.048; protein percentage, -0.070 and -0.116; days open, -0.012 and -0.065; and calving interval, -0.007 and -0.029. Changes in magnitude of correlations were very small for all variables except days open. Genetic and phenotypic correlations of transformed values with days open were -0.027 and -0.140. Modest positive correlated responses would be expected for white coat color percentage following direct selection for milk, fat, and protein yields, but selection for fat and protein percentages, days open, or calving interval would lead to small decreases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple model is proposed, using the method of maximum likelihood to estimate malformation frequencies in racial groups based on data obtained from hospital services. This model uses the proportions of racial admixture, and the observed malformation frequency. It was applied to two defects: postaxial polydactyly and cleft lip, the frequencies of which are recognizedly heterogeneous among racial groups. The frequencies estimated in each racial group were those expected for these malformations, which proves the applicability of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional econometric approaches in modeling the dynamics of equity and commodity markets, have, made great progress in the past decades. However, they assume rationality among the economic agents and and do not capture the dynamics that produce extreme events (black swans), due to deviation from the rationality assumption. The purpose of this study is to simulate the dynamics of silver markets by using the novel computational market dynamics approach. To this end, the daily data from the period of 1st March 2000 to 1st March 2013 of closing prices of spot silver prices has been simulated with the Jabłonska-Capasso-Morale(JCM) model. The Maximum Likelihood approach has been employed to calibrate the acquired data with JCM. Statistical analysis of the simulated series with respect to the actual one has been conducted to evaluate model performance. The model captures the animal spirits dynamics present in the data under evaluation well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kalman filter is a recursive mathematical power tool that plays an increasingly vital role in innumerable fields of study. The filter has been put to service in a multitude of studies involving both time series modelling and financial time series modelling. Modelling time series data in Computational Market Dynamics (CMD) can be accomplished using the Jablonska-Capasso-Morale (JCM) model. Maximum likelihood approach has always been utilised to estimate the parameters of the JCM model. The purpose of this study is to discover if the Kalman filter can be effectively utilized in CMD. Ensemble Kalman filter (EnKF), with 50 ensemble members, applied to US sugar prices spanning the period of January, 1960 to February, 2012 was employed for this work. The real data and Kalman filter trajectories showed no significant discrepancies, hence indicating satisfactory performance of the technique. Since only US sugar prices were utilized, it would be interesting to discover the nature of results if other data sets are employed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target’s three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis concerns the analysis of epidemic models. We adopt the Bayesian paradigm and develop suitable Markov Chain Monte Carlo (MCMC) algorithms. This is done by considering an Ebola outbreak in the Democratic Republic of Congo, former Zaïre, 1995 as a case of SEIR epidemic models. We model the Ebola epidemic deterministically using ODEs and stochastically through SDEs to take into account a possible bias in each compartment. Since the model has unknown parameters, we use different methods to estimate them such as least squares, maximum likelihood and MCMC. The motivation behind choosing MCMC over other existing methods in this thesis is that it has the ability to tackle complicated nonlinear problems with large number of parameters. First, in a deterministic Ebola model, we compute the likelihood function by sum of square of residuals method and estimate parameters using the LSQ and MCMC methods. We sample parameters and then use them to calculate the basic reproduction number and to study the disease-free equilibrium. From the sampled chain from the posterior, we test the convergence diagnostic and confirm the viability of the model. The results show that the Ebola model fits the observed onset data with high precision, and all the unknown model parameters are well identified. Second, we convert the ODE model into a SDE Ebola model. We compute the likelihood function using extended Kalman filter (EKF) and estimate parameters again. The motivation of using the SDE formulation here is to consider the impact of modelling errors. Moreover, the EKF approach allows us to formulate a filtered likelihood for the parameters of such a stochastic model. We use the MCMC procedure to attain the posterior distributions of the parameters of the SDE Ebola model drift and diffusion parts. In this thesis, we analyse two cases: (1) the model error covariance matrix of the dynamic noise is close to zero , i.e. only small stochasticity added into the model. The results are then similar to the ones got from deterministic Ebola model, even if methods of computing the likelihood function are different (2) the model error covariance matrix is different from zero, i.e. a considerable stochasticity is introduced into the Ebola model. This accounts for the situation where we would know that the model is not exact. As a results, we obtain parameter posteriors with larger variances. Consequently, the model predictions then show larger uncertainties, in accordance with the assumption of an incomplete model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our objective is to develop a diffusion Monte Carlo (DMC) algorithm to estimate the exact expectation values, ($o|^|^o), of multiplicative operators, such as polarizabilities and high-order hyperpolarizabilities, for isolated atoms and molecules. The existing forward-walking pure diffusion Monte Carlo (FW-PDMC) algorithm which attempts this has a serious bias. On the other hand, the DMC algorithm with minimal stochastic reconfiguration provides unbiased estimates of the energies, but the expectation values ($o|^|^) are contaminated by ^, an user specified, approximate wave function, when A does not commute with the Hamiltonian. We modified the latter algorithm to obtain the exact expectation values for these operators, while at the same time eliminating the bias. To compare the efficiency of FW-PDMC and the modified DMC algorithms we calculated simple properties of the H atom, such as various functions of coordinates and polarizabilities. Using three non-exact wave functions, one of moderate quality and the others very crude, in each case the results are within statistical error of the exact values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accelerated life testing (ALT) is widely used to obtain reliability information about a product within a limited time frame. The Cox s proportional hazards (PH) model is often utilized for reliability prediction. My master thesis research focuses on designing accelerated life testing experiments for reliability estimation. We consider multiple step-stress ALT plans with censoring. The optimal stress levels and times of changing the stress levels are investigated. We discuss the optimal designs under three optimality criteria. They are D-, A- and Q-optimal designs. We note that the classical designs are optimal only if the model assumed is correct. Due to the nature of prediction made from ALT experimental data, attained under the stress levels higher than the normal condition, extrapolation is encountered. In such case, the assumed model cannot be tested. Therefore, for possible imprecision in the assumed PH model, the method of construction for robust designs is also explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the persistent effects of monetary shocks on output. Previous empirical literature documents this persistence, but standard general equilibrium models with sticky prices fail to generate output responses beyond the duration of nominal contracts. This paper constructs and estimates a general equilibrium model with price rigidities, habit formation, and costly capital adjustment. The model is estimated via Maximum Likelihood using US data on output, the real money stock, and the nominal interest rate. Econometric results suggest that habit formation and adjustment costs to capital play an important role in explaining the output effects of monetary policy. In particular, impulse response analysis indicates that the model generates persistent, hump-shaped output responses to monetary shocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several Authors Have Discussed Recently the Limited Dependent Variable Regression Model with Serial Correlation Between Residuals. the Pseudo-Maximum Likelihood Estimators Obtained by Ignoring Serial Correlation Altogether, Have Been Shown to Be Consistent. We Present Alternative Pseudo-Maximum Likelihood Estimators Which Are Obtained by Ignoring Serial Correlation Only Selectively. Monte Carlo Experiments on a Model with First Order Serial Correlation Suggest That Our Alternative Estimators Have Substantially Lower Mean-Squared Errors in Medium Size and Small Samples, Especially When the Serial Correlation Coefficient Is High. the Same Experiments Also Suggest That the True Level of the Confidence Intervals Established with Our Estimators by Assuming Asymptotic Normality, Is Somewhat Lower Than the Intended Level. Although the Paper Focuses on Models with Only First Order Serial Correlation, the Generalization of the Proposed Approach to Serial Correlation of Higher Order Is Also Discussed Briefly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper employs the one-sector Real Business Cycle model as a testing ground for four different procedures to estimate Dynamic Stochastic General Equilibrium (DSGE) models. The procedures are: 1 ) Maximum Likelihood, with and without measurement errors and incorporating Bayesian priors, 2) Generalized Method of Moments, 3) Simulated Method of Moments, and 4) Indirect Inference. Monte Carlo analysis indicates that all procedures deliver reasonably good estimates under the null hypothesis. However, there are substantial differences in statistical and computational efficiency in the small samples currently available to estimate DSGE models. GMM and SMM appear to be more robust to misspecification than the alternative procedures. The implications of the stochastic singularity of DSGE models for each estimation method are fully discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Affiliation: Henner Brinkmann : Département de biochimie, Faculté de médecine, Université de Montreal