902 resultados para Maximal aerobic exercise


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Exercise training has an important role in the prevention and treatment of hypertension, but its effects on the early metabolic and hemodynamic abnormalities observed in normotensive offspring of hypertensive parents (FH+) have not been studied. We compared high-intensity interval (aerobic interval training, AIT) and moderate-intensity continuous exercise training (CMT) with regard to hemodynamic, metabolic and hormonal variables in FH+ subjects. Forty-four healthy FH+ women (25.0+/-4.4 years) randomized to control (ConFH+) or to a three times per week equal-volume AIT (80-90% of VO(2MAX)) or CMT (50-60% of VO(2MAX)) regimen, and 15 healthy women with normotensive parents (ConFH-; 25.3+/-3.1 years) had their hemodynamic, metabolic and hormonal variables analyzed at baseline and after 16 weeks of follow-up. Ambulatorial blood pressure (ABP), glucose and cholesterol levels were similar among all groups, but the FH+ groups showed higher insulin, insulin sensitivity, carotid-femoral pulse wave velocity (PWV), norepinephrine and endothelin-1 (ET-1) levels and lower nitrite/ nitrate (NOx) levels than ConFH- subjects. AIT and CMT were equally effective in improving ABP (P<0.05), insulin and insulin sensitivity (P<0.001); however, AIT was superior in improving cardiorespiratory fitness (15 vs. 8%; P<0.05), PWV (P<0.01), and BP, norepinephrine, ET-1 and NOx response to exercise (P<0.05). Exercise intensity was an important factor in improving cardiorespiratory fitness and reversing hemodynamic, metabolic and hormonal alterations involved in the pathophysiology of hypertension. These findings may have important implications for the exercise training programs used for the prevention of inherited hypertensive disorder. Hypertension Research (2010) 33, 836-843; doi:10.1038/hr.2010.72; published online 7 May 2010

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: Aerobic capacity and respiratory function may be compromised in obesity, but few studies have been done in highly obese bariatric candidates. In a prospective study, these variables were documented in the preoperative period, aiming to define possible physiologic limitations in a apparently healthy and asymptomatic population. METHOD: Forty-six consecutively enrolled adults (age 39.6 ± 8.4 years, 87.0% females, body mass index /BMI 49.6 ± 6.3 kg/m² ) were analyzed. Ventilatory variables were investigated by automated spirometry, aerobic capacity was estimated by a modified Bruce test in an ergometric treadmill, and body composition was determined by bioimpedance analysis. RESULTS: Total fat was greatly increased (46.4 ± 4.6% of body weight) and body water reduced (47.3 ± 4.6 % body weight), as expected for such obese group. Spirometric findings including forced vital capacity of 3.3 ± 0.8 L and forced expiratory volume-1 second of 2.6 ± 0.6 L were usually acceptable for age and gender, but mild restrictive pulmonary insufficiency was diagnosed in 20.9%. Aerobic capacity was more markedly diminished, as reflected by very modest maximal time (4.5 ± 1.1 min) and distance (322 ±142 m) along with proportionally elevated maximal oxygen consumption (23.4 ± 9.5 mL/kg/min) achieved by these subjects during test exercise. CONCLUSIONS: 1) Cardiopulmonary evaluation was feasible and well-tolerated in this severely obese population; 2) Mean spirometric variables were not diminished in this study, but part of the population displayed mild restrictive changes; 3) Exercise tolerance was very negatively influenced by obesity, resulting in reduced endurance and excessive metabolic cost for the treadmill run; 4) More attention to fitness and aerobic capacity is recommended for seriously obese bariatric candidates;

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: This study investigated maximal cardiometabolic response while running in a lower body positive pressure treadmill (antigravity treadmill (AG)), which reduces body weight (BW) and impact. The AG is used in rehabilitation of injuries but could have potential for high-speed running, if workload is maximally elevated. METHODS: Fourteen trained (nine male) runners (age 27 ± 5 yr; 10-km personal best, 38.1 ± 1.1 min) completed a treadmill incremental test (CON) to measure aerobic capacity and heart rate (V˙O2max and HRmax). They completed four identical tests (48 h apart, randomized order) on the AG at BW of 100%, 95%, 90%, and 85% (AG100 to AG85). Stride length and rate were measured at peak velocities (Vpeak). RESULTS: V˙O2max (mL·kg·min) was similar across all conditions (men: CON = 66.6 (3.0), AG100 = 65.6 (3.8), AG95 = 65.0 (5.4), AG90 = 65.6 (4.5), and AG85 = 65.0 (4.8); women: CON = 63.0 (4.6), AG100 = 61.4 (4.3), AG95 = 60.7 (4.8), AG90 = 61.4 (3.3), and AG85 = 62.8 (3.9)). Similar results were found for HRmax, except for AG85 in men and AG100 and AG90 in women, which were lower than CON. Vpeak (km·h) in men was 19.7 (0.9) in CON, which was lower than every other condition: AG100 = 21.0 (1.9) (P < 0.05), AG95 = 21.4 (1.8) (P < 0.01), AG90 = 22.3 (2.1) (P < 0.01), and AG85 = 22.6 (1.6) (P < 0.001). In women, Vpeak (km·h) was similar between CON (17.8 (1.1) ) and AG100 (19.3 (1.0)) but higher at AG95 = 19.5 (0.4) (P < 0.05), AG90 = 19.5 (0.8) (P < 0.05), and AG85 = 21.2 (0.9) (P < 0.01). CONCLUSIONS: The AG can be used at maximal exercise intensities at BW of 85% to 95%, reaching faster running speeds than normally feasible. The AG could be used for overspeed running programs at the highest metabolic response levels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective. Vibration training (VT) is a new exercise method, with good acceptance among sedentary subjects, due to its passive principle: the machine moves the subject, not the opposite. We hypothesize that untrained subjects can benefit from a greater cardiovascular and metabolic stimulation than trained athletes, resembling classical aerobic-type activity, in addition of eliciting strength gains shown in diverse studies. Methods. 3 group of male subjects, inactive (SED), endurance trained athletes (END) and strength trained athletes (STR) underwent fitness (VO2max) and lower-body strength tests (isokinetic). Subjects were submitted to a session of oscillating VT, composed of 3 exercises (isometric half-squat, dynamic squat, dynamic squat with added load), each of 3 minutes duration, and repeated at 3 frequencies. VO2, heart rate and Borg scale were monitored. Results. 27 healthy subjects (10 SED, 9 END and 8 STR), mean age 24.5 (SED), 25.0 (STR) and 29.8 (END) were included. VO2max was significantly different as expected (47.9 vs. 52.9 vs. 63.9 ml/kg/min, resp. for SED, STR and END). Isokinetic dominant leg extensors strength was higher in STR (3.32 Nm/kg vs. 2.60 and 2.74 in SED and END). During VT, peak oxygen consumption (% of VO2max) attained was 59.3 in SED, 50.8 in STR and 48.0 in END (P<0.001 between SED and other subjects). Peak heart rate (% of heart rate max) was 82.7 in SED, 80.4 in STR and 72.4 in END. In SED, dynamic exercises without extra load elicited 51.0% of VO2max and 72.1% of heart rate max, and perceived effort reached 15.1/20. Conclusions. VT is an unconventional type of exercise, which has been shown to enhance strength, bone density, balance and flexibility. Users are attracted by the relative passivity. In SED, we show that VT elicits sufficient cardiovascular response to benefit overall fitness in addition to the known strength effects. VT's higher acceptance as an exercise in sedentary people, compared to jogging or cycling for example, can lead to better adherence to physical activity. Although long-term effects of VT on health are not avalaible, we believe this type of combination of aerobic and resistance-type exercise can be beneficial on multiple health parameters, especially cardiovascular health.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Discrepancies appear in studies comparing fat oxidation between men and women. Therefore, this study aimed to quantitatively describe and compare whole-body fat oxidation kinetics between genders during exercise, using a sinusoidal (SIN) model. Twelve men and 11 women matched for age, body mass index, and aerobic fitness (maximal oxygen uptake and maximal power output per kilogram of fat-free mass (FFM)) performed submaximal incremental tests (Incr) with 5-min stages and a 7.5% maximal power output increment on a cycle ergometer. Fat oxidation rates were determined using indirect calorimetry, and plotted as a function of exercise intensity. The SIN model, which includes 3 independent variables (dilatation, symmetry, translation) that account for the main quantitative characteristics of kinetics, was used to mathematically describe fat oxidation kinetics and to determine the intensity (Fatmax) eliciting the maximal fat oxidation (MFO). During Incr, women exhibited greater fat oxidation rates from 35% to 85% maximal oxygen uptake, MFO (6.6 ± 0.9 vs. 4.5 ± 0.3 mg·kg FFM-1·min-1), and Fatmax (58.1% ± 1.9% vs. 50.0% ± 2.7% maximal oxygen uptake) than men (p < 0.05). While men and women showed similar global shapes of fat oxidation kinetics in terms of dilatation and symmetry (p > 0.05), the fat oxidation curve tended to be shifted toward higher exercise intensities in women (rightward translation, p = 0.08). These results support the idea that women have a greater reliance on fat oxidation than men during submaximal exercise, but also indicate that this greater fat oxidation is shifted toward higher exercise intensities in women than in men.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acute exercise increases energy expenditure (EE) during exercise and post-exercise recovery [excess post-exercise oxygen consumption (EPOC)] and therefore may be recommended as part of the multidisciplinary management of obesity. Moreover, chronic exercise (training) effectively promotes an increase in insulin sensitivity, which seems to be associated with increased fat oxidation rates (FORs). The main purpose of this thesis is to investigate 1) FORs and extra-muscular factors (hormones and plasma metabolites) that regulate fat metabolism during acute and chronic exercise; and 2) EPOC during acute post-exercise recovery in obese and severely obese men (class II and III). In the first study, we showed that obese and severely obese men present a lower exercise intensity (Fatmax) eliciting maximal fat oxidation and a lower reliance on fat oxidation at high, but not at low and moderate, exercise intensities compared to lean men. This was most likely related to an impaired muscular capacity to oxidize non-esterified fatty acids (NEFA) rather than decreased plasma NEFA availability or a change in the hormonal milieu during exercise. In the second study, we developed an accurate maximal incremental test to correctly and simultaneously evaluate aerobic fitness and fat oxidation kinetics during exercise in this population. This test may be used for the prescription of an appropriate exercise training intensity. In the third study, we demonstrated that only 2 wk of exercise training [continuous training at Fatmax and adapted high-intensity interval training (HIIT)], matched with respect to mechanical work, may be effective to improve aerobic fitness, FORs during exercise and insulin sensitivity, which suggest that FORs might be rapidly improved and that adapted HIIT is feasible in this population. The increased FORs concomitant with the lack of changes in lipolysis during exercise suggest an improvement in the mismatching between NEFA availability and oxidation, highlighting the importance of muscular (oxidative capacity) rather than extra-muscular (hormones and plasma metabolites) factors in the regulation of fat metabolism after a training program. In the fourth study, we observed a positive correlation between EE during exercise and EPOC, suggesting that a chronic increase in the volume or intensity of exercise may increase EE during exercise and during recovery. This may have an impact in weight management in obesity. In conclusion, these findings might have practical implications for exercise training prescriptions in order to improve the therapeutic approaches in obesity and severe obesity. -- L'exercice aigu augmente la dépense énergétique (DE) pendant l'exercice et la récupération post-exercice [excès de consommation d'oxygène post-exercise (EPOC)] et peut être utilisé dans la gestion multidisciplinaire de l'obésité. Quant à l'exercice chronique (entraînement), il est efficace pour augmenter la sensibilité à l'insuline, ce qui semble être associé à une amélioration du débit d'oxydation lipidique (DOL). Le but de cette thèse est d'étudier 1) le DOL et les facteurs extra-musculaires (hormones et métabolites plasmatiques) qui régulent le métabolisme lipidique pendant l'exercice aigu et chronique et 2) l'EPOC lors de la récupération aiguë post-exercice chez des hommes obèses et sévèrement obèses (classe II et III). Dans la première étude nous avons montré que les hommes obèses et sévèrement obèses présentent une plus basse intensité d'exercice (Fatmax) correspondant au débit d'oxydation lipidique maximale et un plus bas DOL à hautes, mais pas à faibles et modérées, intensités d'exercice comparé aux sujets normo-poids, ce qui est probablement lié à une incapacité musculaire à oxyder les acides gras non-estérifiés (AGNE) plutôt qu'à une diminution de leur disponibilité ou à un changement du milieu hormonal pendant l'exercice. Dans la deuxième étude nous avons développé un test maximal incrémental pour évaluer simultanément l'aptitude physique aérobie et la cinétique d'oxydation des lipides pendant l'exercice chez cette population. Dans la troisième étude nous avons montré que seulement deux semaines d'entraînement (continu à Fatmax et intermittent à haute intensité), appariés par la charge de travail, sont efficaces pour améliorer l'aptitude physique aérobie, le DOL pendant l'exercice et la sensibilité à l'insuline, ce qui suggère que le DOL peut être rapidement amélioré chez cette population. Ceci, en absence de changements de la lipolyse pendant l'exercice, suggère une amélioration de la balance entre la disponibilité et l'oxydation des AGNE, ce qui souligne l'importance des facteurs musculaires (capacité oxydative) plutôt que extra-musculaires (hormones et métabolites plasmatiques) dans la régulation du métabolisme lipidique après un entraînement. Dans la quatrième étude nous avons observé une corrélation positive entre la DE pendant l'exercice et l'EPOC, ce qui suggère qu'une augmentation chronique du volume ou de l'intensité de l'exercice pourrait augmenter la DE lors de l'exercice et lors de la récupération post-exercice. Ceci pourrait avoir un impact sur la gestion du poids chez cette population. En conclusion, ces résultats pourraient avoir des implications pratiques lors de la prescription des entraînements dans le but d'améliorer les approches thérapeutiques de l'obésité et de l'obésité sévère.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Master athletes are often considered to represent the ideal rate of decline of aerobic function; however, most of the studies interested in active elderly people are often limited to people younger than 75. We aimed to determine the physiological adaptations and aerobic fitness in a selected European population of active octogenarians during maximal and submaximal exercise tests. Aerobic capacity was measured during maximal incremental tests on treadmill (TR) and cycle-ergometer (CE) and functional capacity during a 6-minute walk test (6-MWT) in 17 subjects aged 81.2 +/- 0.8 years. Pulmonary gas exchange and heart rate (HR) were continuously measured during the different exercise tests. Maximal oxygen consumption (V.O (2max)) on TR and CE was significantly higher than predicted values (TR: 28.7 +/- 1.2 vs. 17 +/- 0.5 ml . kg (-1) . min (-1); CE: 23 +/- 1.2 vs. 16 +/- 0.6 ml . kg (-1) . min (-1) for measured and predicted values respectively). V.O (2max) and HR (max), as well as V.O (2) and HR at the ventilatory threshold (V.O (2)T (V.E) and HR T (V.E)) were significantly higher on TR than on CE (HR (max): 144 +/- 4 vs. 138 +/- 4 bpm; V.O (2)T (V.E): 22.5 +/- 0.8 vs. 17.7 +/- 0.9 ml . kg (-1) . min (-1) for TR and CE respectively). V.O (2)T (V.E) and HR T (V.E) on TR were equivalent to V.O (2) and HR measured during the 6-MWT. HR T (V.E) on TR and mean HR during the 6-MWT were strongly correlated (R = 0.82, p < 0.01). Maintenance of regular physical activity provides high aerobic fitness, in octogenarians, as was shown by the higher values of our subjects in comparison to predicted values. Moreover, the close relation between the intensity developed at T (V.E) on TR and 6-MWT could support the idea that a walk test is a submaximal test performed at high intensity that could provide a basis for exercise prescription in an individualized manner in active elderly people.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study aimed to characterise both the [Formula: see text] kinetics within constant heavy-intensity swimming exercise, and to assess the relationships between [Formula: see text] kinetics and other parameters of aerobic fitness, in well-trained swimmers. On separate days, 21 male swimmers completed: (1) an incremental swimming test to determine their maximal oxygen uptake [Formula: see text], first ventilatory threshold (VT), and the velocity associated with [Formula: see text] [Formula: see text] and (2) two square-wave transitions from rest to heavy-intensity exercise, to determine their [Formula: see text] kinetics. All the tests involved breath-by-breath analysis of freestyle swimming using a swimming snorkel. [Formula: see text] kinetics was modelled with two exponential functions. The mean values for the incremental test were 56.0 ± 6.0 ml min(-1) kg(-1), 1.45 ± 0.08 m s(-1); and 42.1 ± 5.7 ml min(-1) kg(-1) for [Formula: see text], [Formula: see text] and VT, respectively. For the square-wave transition, the time constant of the primary phase (τ(p)) averaged 17.3 ± 5.4 s and the relevant slow component (A'(sc)) averaged 4.8 ± 2.9 ml min(-1) kg(-1) [representing 8.9% of the end-exercise [Formula: see text] (%A'(sc))]. τ(p) was correlated with [Formula: see text] (r = -0.55, P = 0.01), but not with either [Formula: see text] (r = 0.05, ns) or VT (r = 0.14, ns). The %A'(sc) did not correlate with either [Formula: see text] (r = -0.14, ns) or [Formula: see text] (r = 0.06, ns), but was inversely related with VT (r = -0.61, P < 0.01). This study was the first to describe the [Formula: see text] kinetics in heavy-intensity swimming using specific swimming exercise and appropriate methods. As has been demonstrated in cycling, faster [Formula: see text] kinetics allow higher aerobic power outputs to be attained. The slow component seems to be reduced in swimmers with higher ventilatory thresholds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction Discrepancies appear in studies comparing fat oxidation between men and women during exercise (1). Therefore, this study aimed to quantitatively describe and compare whole body fat oxidation kinetics between genders during exercise using a sinusoidal model (SIN) (2). Methods Twelve men and 11 women matched for age, body mass index (23.4±0.6 kg.m-2 and 21.5±0.8 kg.m-2, respectively) and aerobic fitness [maximal oxygen uptake ( ) (58.5±1.6 mL.kg FFM-1.min-1 and 55.3±2.0 mL.kg FFM-1.min-1, respectively) and power output ( ) per kilogram of fat-free mass (FFM)] performed submaximal incremental tests (Incr) with 5-min stages and 7.5% increment on a cycle ergometer. Respiratory and HR values were averaged over the last 2 minutes of each stage. All female study participants were eumenorrheic, reported regular menstrual cycles (28.6 ± 0.8 days) and were not taking oral contraceptives (OC) or other forms of exogenous ovarian hormones. Women were studied in the early follicular phase (FP) of their menstrual cycle (between days 3 and 8, where day 1 is the first day of menses). Fat oxidation rates were determined using indirect calorimetry and plotted as a function of exercise intensity. The SIN model (2), which includes three independent variables (dilatation, symmetry, translation), was used to mathematically describe fat oxidation kinetics and to determine the intensity (Fatmax) eliciting the maximal fat oxidation (MFO). Results During Incr, women exhibited greater fat oxidation rates from 35 to 85% , MFO (6.6 ± 0.9 vs. 4.5 ± 0.3 mgkg FFM-1min-1) and Fatmax (58.1 ± 1.9 vs. 50.0 ± 2.7% ) (P<0.05) than men. While men and women showed similar global shapes of fat oxidation kinetics in terms of dilatation and symmetry (P>0.05), the fat oxidation curve tended to be shifted towards higher exercise intensities in women (rightward translation, P=0.08). Conclusion These results showed that women, eumenorrheic, not taking OC and tested in FP, have a greater reliance on fat oxidation than men during submaximal exercise, but they also indicate that this greater fat oxidation is shifted towards higher exercise intensities in women compared with men. References 1. Blaak E. Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care 4: 499-502, 2001. 2. Cheneviere X, Malatesta D, Peters EM, and Borrani F. A mathematical model to describe fat oxidation kinetics during graded exercise. Med Sci Sports Exerc 41: 1615-1625, 2009.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: We hypothesize that untrained subjects can benefit from a greater cardiovascular stimulation than trained athletes, resembling classical aerobic-type activity, in addition to eliciting strength gains.METHODS: 3 groups of male subjects, inactive (SED), endurance trained (END) and strength trained (STR) underwent fitness (VO2max) and lower-body strength tests (isokinetic). Subjects were submitted to a session of oscillating VT, composed of 3 exercises (isometric half-squat, dynamic squat, dynamic squat with added load), each of 3 minutes duration, and repeated at 3 vibration frequencies (20, 26 and 32 Hz). VO2, heart rate and Borg scale were monitored.RESULTS: 27 healthy subjects (10 SED, 9 END and 8 STR), mean age 24.5 (SED), 25.0 (STR) and 29.8 (END) were included. VO2max was significantly different as expected (47.9 vs. 52.9 vs. 63.9 mL?min-1?kg-1, resp. for SED, STR and END). Isokinetic dominant leg extensors strength was higher in STR (3.32 N?m?kg-1 vs. 2.60 and 2.74 in SED and END). During VT, peak oxygen consumption (% of VO2max) attained was 59.3 in SED, 50.8 in STR and 48.0 in END (P<0.001 between SED and other subjects). Peak heart rate (% of heart rate max) was 82.7 in SED, 80.4 in STR and 72.4 in END. In SED, dynamic exercises without extra load elicited 51.0 % of VO2max and 72.1 % of heart rate max, and perceived effort reached 15.1/20.CONCLUSIONS: VT is an unconventional type of exercise, known to enhance strength, bone density, balance and flexibility. Users are attracted by the relative passivity. In SED, VT elicits sufficient cardiovascular response to benefit overall fitness in addition to the strength effects. VT's higher acceptance as an exercise in sedentary people, compared to jogging or cycling, can lead to better adherence to physical activity. Although long-term effects of VT on health are not available, we believe this type of mixed aerobic and resistance-type exercise can be beneficial on multiple health parameters, especially cardiovascular health.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although there is consensus that the central nervous system mediates the increases in maximal voluntary force (maximal voluntary contraction, MVC) produced by resistance exercise, the involvement of the primary motor cortex (M1) in these processes remains controversial. We hypothesized that 1-Hz repetitive transcranial magnetic stimulation (rTMS) of M1 during resistance training would diminish strength gains. Forty subjects were divided equally into five groups. Subjects voluntarily (Vol) abducted the first dorsal interosseus (FDI) (5 bouts x 10 repetitions, 10 sessions, 4 wk) at 70-80% MVC. Another group also exercised but in the 1-min-long interbout rest intervals they received rTMS [Vol+rTMS, 1 Hz, FDI motor area, 300 pulses/session, 120% of the resting motor threshold (rMT)]. The third group also exercised and received sham rTMS (Vol+Sham). The fourth group received only rTMS (rTMS_only). The 37.5% and 33.3% gains in MVC in Vol and Vol+Sham groups, respectively, were greater (P = 0.001) than the 18.9% gain in Vol+rTMS, 1.9% in rTMS_only, and 2.6% in unexercised control subjects who received no stimulation. Acutely, within sessions 5 and 10, single-pulse TMS revealed that motor-evoked potential size and recruitment curve slopes were reduced in Vol+rTMS and rTMS_only groups and accumulated to chronic reductions by session 10. There were no changes in rMT, maximum compound action potential amplitude (M(max)), and peripherally evoked twitch forces in the trained FDI and the untrained abductor digiti minimi. Although contributions from spinal sources cannot be excluded, the data suggest that M1 may play a role in mediating neural adaptations to strength training.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction Exposure to hypoxia leads to several reactions of the organism, which try to compensate the reduced oxygen level in the blood. Acute response is characterized by an increase in pulmonary ventilation (Hypoxia Ventilatory Response, HVR) and in cardiac output (cardiac response to hypoxia). Heart rate (HR) at rest and during exercise is higher at high altitude than at sea level, whereas HRmax is lower. These cardiac adaptations are partially explained by an increased sympathetic stimulation associated with a reduced parasympathetic tone (12). The precise mechanisms of HRmax decline in acute hypoxia are however still to be identified, although several hypothesis have been suggested, such as a direct effect of hypoxia on the electrophysiological properties, an influence of skeletal maximal VO2 or a modulation of the autonomic nervous system (8). Some authors have reported that endurance trained athletes present an increased sensitivity to hypoxia shown by a large reduction in VO2max and an important decrease in arterial saturation. (9,11, 13) A hypoxia test can assess the sensibility of chemoreceptors to the reduction of oxygen by calculating hypoxic ventilatory and cardiac responses, knowing that low sensibility is correlated with poor acclimatization. Two parameters results from the differences in ventilation (and heart rate) divided by the difference in the arterial oxygen saturation between normoxia and hypoxia (18). Objective The hypothesis tested by this study is that parasympathetic reactivation after moderate effort in hypoxic condition can be used as a marker of individual sensibility to hypoxia. Parasympathetic reactivation is a marker of vagal tone that predict endurance capacity and aerobic fitness (2,7). Methods Subjects This study uses data obtained from two groups of athletes participating into two larger studies about adaptation to hypoxia. One group is composed of elite athletes (Swiss ski mountaineering team), the other one of mid-level athletes (ski mountaineering amateurs). The particularity of this target population is that they often train at high altitude, and therefore could show a better response to hypoxia than athleltes of other disciplines. Protocol The athletes performed a submaximal exercise (6min run at 9 km/h, flat) followed by 10 min of seated rest either in an hypoxic chamber (simulated altitude of 3000m) or in normoxic conditions. During the resting phase parasympathetic reactivation was assessed by beat-to-beat HR measurements.A test of tolerance to altitude was also performed. Analysis Parasympathetic reactivation, assessed by the calculation of the root mean square of successive differences in the R-R intervals (RMSSD)(4), is compared to individual responses at altitude, in order to appreciate the correlation between the two phenomena.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This review summarizes the rationale for personalized exercise training in obesity and diabetes, targeted at the level of maximal lipid oxidation as can be determined by exercise calorimetry. This measurement is reproducible and reflects muscles' ability to oxidize lipids. Targeted training at this level is well tolerated, increases the ability to oxidize lipids during exercise and improves body composition, lipid and inflammatory status, and glycated hemoglobin, thus representing a possible future strategy for exercise prescription in patients suffering from obesity and diabetes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: To compare the effects of two different 2-week-long training modalities [continuous at the intensity eliciting the maximal fat oxidation (Fatmax ) versus high-intensity interval training (HIIT)] in men with class II and III obesity. METHODS: Nineteen men with obesity (BMI ≥ 35 kg(.) m(-2) ) were assigned to Fatmax group (GFatmax ) or to HIIT group (GHIIT ). Both groups performed eight cycling sessions matched for mechanical work. Aerobic fitness and fat oxidation rates (FORs) during exercise were assessed prior and following the training. Blood samples were drawn to determine hormones and plasma metabolites levels. Insulin resistance was assessed by the homeostasis model assessment of insulin resistance (HOMA2-IR). RESULTS: Aerobic fitness and FORs during exercise were significantly increased in both groups after training (P ≤ 0.001). HOMA2-IR was significantly reduced only for GFatmax (P ≤ 0.001). Resting non-esterified fatty acids (NEFA) and insulin decreased significantly only in GFatmax (P ≤ 0.002). CONCLUSIONS: Two weeks of HIIT and Fatmax training are effective for the improvement of aerobic fitness and FORs during exercise in these classes of obesity. The decreased levels of resting NEFA only in GFatmax may be involved in the decreased insulin resistance only in this group.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Circulating progenitor cells (CPC) treatments may have great potential for the recovery of neurons and brain function. OBJECTIVE: To increase and maintain CPC with a program of exercise, muscle electro-stimulation (ME) and/or intermittent-hypobaric-hypoxia (IHH), and also to study the possible improvement in physical or psychological functioning of participants with Traumatic Brain Injury (TBI). METHODS: Twenty-one participants. Four groups: exercise and ME group (EEG), cycling group (CyG), IHH and ME group (HEG) and control group (CG). Psychological and physical stress tests were carried out. CPC were measured in blood several times during the protocol. RESULTS: Psychological tests did not change. In the physical stress tests the VO2 uptake increased in the EEG and the CyG, and the maximal tolerated workload increased in the HEG. CPC levels increased in the last three weeks in EEG, but not in CyG, CG and HEG. CONCLUSIONS: CPC levels increased in the last three weeks of the EEG program, but not in the other groups and we did not detect performed psychological test changes in any group. The detected aerobic capacity or workload improvement must be beneficial for the patients who have suffered TBI, but exercise type and the mechanisms involved are not clear.