895 resultados para Mass flow rates


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the characterisation of self-excited oscillations in a kerosene burner. The combustion instability exhibits two different modes and frequencies depending on the air flow rate. Experimental results reveal the influence of the spray to shift between these two modes. Pressure and heat release fluctuations have been measured simultaneously and the flame transfer function has been calculated from these measurements. The Mie scattering technique has been used to record spray fluctuations in reacting conditions with a high speed camera. Innovative image processing has enabled us to obtain fluctuations of the Mie scattered light from the spray as a temporal signal acquired simultaneously with pressure fluctuations. This has been used to determine a transfer function relating the image intensity and hence the spray fluctuations to changes in air velocity. This function has identified the different role the spray plays in the two modes of instability. At low air flow rates, the spray responds to an unsteady air flow rate and the time varying spray characteristics lead to unsteady combustion. At higher air flow rates, effective evaporation means that the spray dynamics are less important, leading to a different flame transfer function and frequency of self-excited oscillation. In conclusion, the combustion instabilities observed are closely related with the fluctuations of the spray motion and evaporation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gas-phase silver nanoparticles were coated with silicon dioxide (SiO2) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO2 precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO2 coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 degrees C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10(7) particles cm(-3).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): We estimate monthly runoff for a 2-dimensional solution domain containing those areas tributary to Pyramid Lake, Nevada (the Truckee River drainage basin) at a 1-kilometer grid cell spacing. ... To calculate the effect of snow on the hydrologic system, we perform two experiments. In the first we assume that all precipitation falls as rain; in the second we assume that some precipitation falls as snow, thus available water is a combination of rain and snowmelt. We find that considering the effect of snow results in a more accurate representation of mean monthly flow rates, in particular the peak flow during the melt season in the Sierra Nevada. These preliminary results indicate that a relatively simple snow model can improve the representation of Truckee River basin hydrology, significantly reducing errors in modeled seasonal runoff.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transient test facilities offer the potential for the simultaneous study of turbine aerodynamic performance, unsteady flow phenomena and the heat transfer characteristics of a turbine stage. This paper describes the development of aerodynamic performance measurement techniques in the Oxford Rotor Facility (ORF). The solutions to the technological issues involved with transient testing presented in this paper are expected to achieve levels of precision uncertainty comparable with traditional steady flow test rigs. The theoretical background to the measurement of aerodynamic performance is presented together with a comprehensive pre-test uncertainty analysis. The instrumentation scheme for the measurement of stage mass flow rate is discussed in detail, the measurements of shaft power, total inlet enthalpy, and stage pressure ratio are also outlined. The current working section features a 62% scale, 1-1/2 stage, high-pressure shroudless transonic turbine. The required inlet flow conditions are provided by an Isentropic Light Piston Tunnel (ILPT) with a quasi-steady state run time of approximately 70ms. The testing is conducted at engine representative specific speed, pressure ratio, gas-to-wall temperature ratio, Mach number and Reynolds number.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Mundel Lake is an extremely shallow lagoon on the west coast of Sri Lanka. It is connected to the Puttalam Lagoon through 15 km long Dutch Canal. Salinity measurements and daily sea level data were obtained fortnightly from January 1993 to March 1994 and they were used to quantify the salt and water budget along with precipitation, evaporation and freshwater runoff. Extreme fluctuations of salinity and sea level are striking features of the system. Salinity of the Mundel Lake and Dutch Canal varied from 5-46.5 and 6 61 ppt respectively while the sea level ranged from -0.25 to +1.2 m. Tidal variations were not seen in the lagoon due to its long narrow canal system. Salt budget showed that the deposition of salt on the lagoon bottom during periods of decreasing water level. During increasing water level, salt is dissolved again. Flow of water through the Dutch Canal between the Puttalam Lagoon and Mundel Lake is driven by the changes in sea level. These changes are mainly due to seasonal changes of net freshwater supply and, to a lesser degree, to seasonal changes in sea surface height. As the flow rates are small due to the long and narrow canal, the residence time ranges between two months and several months in the Mundel Lake, except during season of high freshwater supply. As the water exchange is weak, the Mundel Lake becomes hyper saline with strong fluctuations in salinity. This implies a stress to all lagoon dwelling aquatic organisms and also to aquaculture practices in the area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes a method of improving the cooling of the hub region of high-pressure turbine (HPT) rotor by making better use of the unsteady coolant flows originating from the upstream vane. The study was performed computationally on an engine HPT stage with representative inlet hot streak and vane coolant conditions. An experimental validation study of hot streak migration was undertaken on two low-speed test facilities. The unsteady mechanisms that transport hot and cold fluid within the rotor hub region are first examined. It was found that vortex-blade interaction dominated the unsteady transport of hot and cold fluid in the rotor hub region. This resulted in the transport of hot fluid onto the rotor hub and pressure surface, causing a peak in the surface gas temperatures. The vane film coolant was found to have only a limited effect in cooling this region. A new cooling configuration was thus examined which exploits the unsteadiness in rotor hub to aid transport of coolant towards regions of high rotor surface temperatures. The new coolant was introduced from a slot upstream of the vane. This resulted in the feed of slot coolant at a different phase and location relative to the vane film coolant within the rotor. The slot coolant was entrained into the unsteady rotor secondary flows and transported towards the rotor hub-pressure surface region. The slot coolant reduced the peak time-averaged rotor temperatures by a similar amount as the vane film coolant despite having only a sixth of the coolant mass flow. Copyright © 2008 by ASME.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To control combustion instabilities occurring in LPP gas turbine combustors, several active and passive systems have been developed in recent years. The combustion chamber cooling geometry has the potential to influence instability feedback loops by absorbing acoustical energy inside the combustor. The design of the cooling liner and the geometry of the cooling plenum and the cooling air flow rate have a significant influence on the absorption characteristics of the system. This paper presents the results of a cold flow study which was carried out in the course of a comprehensive study on the influence of the cooling geometry on combustor thermoacoustics. Absorption characteristics of three different cooling liner geometries and non-perforated plates were determined over a frequency range from 50 Hz to 600 Hz for different cooling flow rates and different cooling plenum volumes. The experimental results compared well with results from a low order thermoacoustic network model. The acoustic energy absorption spectrum of a cooling liner with 90°-hole configuration was found to be strongly dependent on cooling flow rate and cooling plenum volume, whereas the absorption spectrum of cooling liners with 25°-holes were found to be strongly dependent on the cooling plenum volume, but less dependent on the cooling air flow rate. All cooling liner setups with perforations were capable of increased acoustic absorption over a broad band of frequencies compared to the case of non-perforated combustor walls. © 2010 by Johannes Schmidt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

mark Unsteady ejectors can be driven by a wide range of driver jets. These vary from pulse detonation engines, which typically have a long gap between each slug of fluid exiting the detonation tube (mark-space ratios in the range 0.1-0.2) to the exit of a pulsejet where the mean mass flow rate leads to a much shorter gap between slugs (mark-space ratios in the range 2-3). The aim of this paper is to investigate the effect of mark-space ratio on the thrust augmentation of an unsteady ejector. Experimental testing was undertaken using a driver jet with a sinusoidal exit velocity profile. The mean value, amplitude and frequency of the velocity profile could be changed allowing the length to diameter ratio of the fluid slugs L/D and the mark-space ratio (the ratio of slug length to the spacing between slugs) L/S to be varied. The setup allowed L/S of the jet to vary from 0.8 to 2.3, while the L/D ratio of the slugs could take any values between 3.5 and 7.5. This paper shows that as the mark-space ratio of the driver jet is increased the thrust augmentation drops. Across the range of mark-space ratios tested, there is shown to be a drop in thrust augmentation of 0.1. The physical cause of this reduction in thrust augmentation is shown to be a decrease in the percentage time over which the ejector entrains ambient fluid. This is the direct result ofthe space between consecutive slugs in the driver jet decreasing. The one dimensional model reported in Heffer et al. [1] is extended to include the effect of varying L/S and is shown to accurately capture the experimentally measured behavior ofthe ejector. Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optimisation of cooling systems within gas turbine engines is of great interest to engine manufacturers seeking gains in performance, efficiency and component life. The effectiveness of coolant delivery is governed by complex flows within the stator wells and the interaction of main annulus and cooling air in the vicinity of the rim seals. This paper reports the development of a test facility which allows the interaction of cooling air and main gas paths to be measured at conditions representative of those found in modern gas turbine engines. The test facility features a two stage turbine with an overall pressure ratio of approximately 2.6:1. Hot air is supplied to the main annulus using a Rolls-Royce Dart compressor driven by an aero-derivative engine plant. Cooling air can be delivered to the stator wells at multiple locations and at a range of flow rates which cover bulk ingestion through to bulk egress. The facility has been designed with adaptable geometry to enable rapid changes of cooling air path configuration. The coolant delivery system allows swift and accurate changes to the flow settings such that thermal transients may be performed. Particular attention has been focused on obtaining high accuracy data, using a radio telemetry system, as well as thorough through-calibration practices. Temperature measurements can now be made on both rotating and stationary discs with a long term uncertainty in the region of 0.3 K. A gas concentration measurement system has also been developed to obtain direct measurement of re-ingestion and rim seal exchange flows. High resolution displacement sensors have been installed in order to measure hot running geometry. This paper documents the commissioning of a test facility which is unique in terms of rapid configuration changes, non-dimensional engine matching and the instrumentation density and resolution. Example data for each of the measurement systems is presented. This includes the effect of coolant flow rate on the metal temperatures within the upstream cavity of the turbine stator well, the axial displacement of the rotor assembly during a commissioning test, and the effect of coolant flow rate on mixing in the downstream cavity of the stator well. Copyright © 2010 by ASME.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the effect of seal clearance on the efficiency of a turbine with a shrouded rotor is compared with the effect of the tip clearance when the same turbine has an unshrouded rotor. The shrouded versus unshrouded comparison was undertaken for two turbine stage designs one having 50% reaction the other having 24% reaction. Measurements for a range of clearances, including very small clearances, showed three important phenomena. Firstly, as the clearance is reduced, there is a "break-even clearance" at which both the shrouded turbine and the unshrouded turbine have the same efficiency. If the clearance is reduced further, the unshrouded turbine performs better than the shrouded turbine, with the difference at zero clearance termed the "offset loss". This is contrary to the traditional assumption that both shrouded and unshrouded turbines have the same efficiency at zero clearance. The physics of the break-even clearance and the offset loss are discussed. Secondly, the use of a lower reaction had the effect of reducing the tip leakage efficiency penalty for both the shrouded and the unshrouded turbines. In order to understand the effect of reaction on the tip leakage, an analytical model was used and it was found that the tip leakage efficiency penalty should be understood as the dissipated kinetic energy rather than either the tip leakage mass flow rate or the tip leakage loss coefficient. Thirdly, it was also observed that, at a fixed flow coefficient, the fractional change in the output power with clearance was approximately twice the fractional change in efficiency with clearance. This was explained by using an analytical model. © 2010 by ASME.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stabilisation, using a wide range of binders including wastes, is most effective for heavy metal soil contamination. Bioremediation techniques, including bioaugmentation to enhance soil microbial population, are most effective for organic contaminants in the soil. For mixed contaminant scenarios a combination of these two techniques is currently being investigated. An essential issue in this combined remediation system is the effect of microbial processes on the leachability of the heavy metals. This paper considers the use of zeolite and compost as binder additives combined with bioaugmentation treatments and their effect on copper leachability in a model contaminated soil. Different leaching test conditions are considered including both NRA and TCLP batch leaching tests as well as flow-through column tests. Two flow rates are applied in the flow-through tests and the two leaching tests are compared. Recommendations are given as to the effectiveness of this combined remediation technique in the immobilisation of copper. © 2005 Taylor & Francis Group.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of an opposing wind on the stratification and flow produced by a buoyant plume rising from a heat source on the floor of a ventilated enclosure is investigated. Ventilation openings located at high level on the windward side of the enclosure and at low level on the leeward side allow a wind-driven flow from high to low level, opposite to the buoyancy-driven flow. One of two stable steady flow regimes is established depending on a dimensionless parameter F that characterizes the relative magnitudes of the wind-driven and buoyancy-driven velocities within the enclosure, and on the time history of the flow. A third, unstable steady flow solution is identified. For small opposing winds (small F) a steady, two-layer stratification and displacement ventilation is established. Exterior fluid enters through the lower leeward openings and buoyant interior fluid leaves through the upper windward openings. As the wind speed increases, the opposing wind may cause a reversal in the flow direction. In this case, cool exterior fluid enters through the high windward openings and mixes the interior fluid, which exits through the leeward openings. There are now two possibilities. If the rate of heat input by the source exceeds the rate of heat loss through the leeward openings, the temperature of the interior increases and this flow reversal is only maintained temporarily. The buoyancy force increases with time, the flow reverts to its original direction, and steady two-layer displacement ventilation is re-established and maintained. In this regime, the increase in wind speed increases the depth and temperature of the warm upper layer, and reduces the ventilation flow rate. If, on the other hand, the heat loss exceeds the heat input, the interior cools and the buoyancy-driven flow decreases. The reversed flow is maintained, the stratification is destroyed and mixing ventilation occurs. Further increases in wind speed increase the ventilation rate and decrease the interior temperature. The transitions between the two ventilation flow patterns exhibit hysteresis. The change from displacement ventilation to mixing ventilation occurs at a higher F than the transition from mixing to displacement. Further, we find that the transition from mixing to displacement ventilation occurs at a fixed value of F, whereas the transition from displacement to mixing flow is dependent on the details of the time history of the flow and the geometry of the openings, and is not determined solely by the value of F. Theoretical models that predic t the steady stratification profiles and flow rates for the displacement and mixing ventilation, and the transitions between them, are presented and compared with measurements from laboratory experiments. The transition between these ventilation patterns completely changes the internal environment, and we discuss some of the implications for the natural ventilation of buildings. © 2004 Cambridge University Press.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The performance of a transonic fan operating within nonuniform inlet flow remains a key concern for the design and operability of a turbofan engine. This paper applies computational methods to improve the understanding of the interaction between a transonic fan and an inlet total pressure distortion. The test case studied is the NASA rotor 67 stage operating with a total pressure distortion covering a 120-deg sector of the inlet flow field. Full-annulus, unsteady, three-dimensional CFD has been used to simulate the test rig installation and the full fan assembly operating with inlet distortion. Novel post-processing methods have been applied to extract the fan performance and features of the interaction between the fan and the nonuniform inflow. The results of the unsteady computations agree well with the measurement data. The local operating condition of the fan at different positions around the annulus has been tracked and analyzed, and this is shown to be highly dependent on the swirl and mass flow redistribution that the rotor induces ahead of it due to the incoming distortion. The upstream flow effects lead to a variation in work input that determines the distortion pattern seen downstream of the fan stage. In addition, the unsteady computations also reveal more complex flow features downstream of the fan stage, which arise due to the three dimensionality of the flow and unsteadiness. © 2012 American Society of Mechanical Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gas turbine engine performance requires effective and reliable internal cooling over the duty cycle of the engine. Life predictions for rotating components subject to the main gas path temperatures are vital. This demands increased precision in the specification of the internal air system flows which provide turbine stator well cooling and sealing. This in turn requires detailed knowledge of the flow rates through rim seals and interstage labyrinth seals. Knowledge of seal movement and clearances at operating temperatures is of great importance when prescribing these flows. A test facility has been developed at the University of Sussex, incorporating a two stage turbine rated at 400 kW with an individual stage pressure ratio of 1.7:1. The mechanical design of the test facility allows internal cooling geometry to be rapidly re-configured, while cooling flow rates of between 0.71 CW, ENT and 1.46 C W, ENT, may be set to allow ingress or egress dominated cavity flows. The main annulus and cavity conditions correspond to in cavity rotational Reynolds numbers of 1.71×106< Reφ <1.93×106. Displacement sensors have been used to establish hot running seal clearances over a range of stator well flow conditions, allowing realistic flow rates to be calculated. Additionally, gas seeding techniques have been developed, where stator well and main annulus flow interactions are evaluated by measuring changes in gas concentration. Experiments have been performed which allow rim seal and re-ingestion flows to be quantified. It will be shown that this work develops the measurement of stator well cooling flows and provides data suitable for the validation of improved thermo-mechanical and CFD codes, beneficial to the engine design process. Copyright © 2011 by Rolls-Royce plc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Progress in reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, little has been published on slip controllers for air-braked heavy vehicles, or the effects of slow pneumatic actuation on their design and performance. This paper introduces a sliding mode slip controller for air-braked heavy vehicles. The effects of pneumatic actuator delays and flow rates on stopping performance and air (energy) consumption are presented through vehicle simulations. Finally, the simulations are validated with experiments using a hardware-in-the-loop rig. It is shown that for each wheel, pneumatic valves with delays smaller than 3ms and orifice diameters around 8mm provide the best performance. © 2013 Copyright Taylor and Francis Group, LLC.