873 resultados para Mass based allocation
Resumo:
Within this paper modern techniques such as satellite image analysis and tools provided by geographic information systems (GIS.) are exploited in order to extend and improve existing techniques for mapping the spatial distribution of sediment transport processes. The processes of interest comprise mass movements such as solifluction, slope wash, dirty avalanches and rock- and boulder falls. They differ considerably in nature and therefore different approaches for the derivation of their spatial extent are required. A major challenge is addressing the differences between the comparably coarse resolution of the available satellite data (Landsat TM/ETM+, 30 in x 30 m) and the actual scale of sediment transport in this environment. A three-stepped approach has been developed which is based on the concept of Geomorphic Process Units (GPUs): parameterization, process area delineation and combination. Parameters include land cover from satellite data and digital elevation model derivatives. Process areas are identified using a hierarchical classification scheme utilizing thresholds and definition of topology. The approach has been developed for the Karkevagge in Sweden and could be successfully transferred to the Rabotsbekken catchment at Okstindan, Norway using similar input data. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
A regional overview of the water quality and ecology of the River Lee catchment is presented. Specifically, data describing the chemical, microbiological and macrobiological water quality and fisheries communities have been analysed, based on a division into river, sewage treatment works, fish-farm, lake and industrial samples. Nutrient enrichment and the highest concentrations of metals and micro-organics were found in the urbanised, lower reaches of the Lee and in the Lee Navigation. Average annual concentrations of metals were generally within environmental quality standards although, oil many occasions, concentrations of cadmium, copper, lead, mercury and zinc were in excess of the standards. Various organic substances (used as herbicides, fungicides, insecticides, chlorination by-products and industrial solvents) were widely detected in the Lee system. Concentrations of ten micro-organic substances were observed in excess of their environmental quality standards, though not in terms of annual averages. Sewage treatment works were the principal point source input of nutrients. metals and micro-organic determinands to the catchment. Diffuse nitrogen sources contributed approximately 60% and 27% of the in-stream load in the upper and lower Lee respectively, whereas approximately 60% and 20% of the in-stream phosphorus load was derived from diffuse sources in the upper and lower Lee. For metals, the most significant source was the urban runoff from North London. In reaches less affected by effluent discharges, diffuse runoff from urban and agricultural areas dominated trends. Flig-h microbiological content, observed in the River Lee particularly in urbanised reaches, was far in excess of the EC Bathing Water Directive standards. Water quality issues and degraded habitat in the lower reaches of the Lee have led to impoverished aquatic fauna but, within the mid-catchment reaches and upper agricultural tributaries, less nutrient enrichment and channel alteration has permitted more diverse aquatic fauna.
Resumo:
The problem of modeling solar energetic particle (SEP) events is important to both space weather research and forecasting, and yet it has seen relatively little progress. Most important SEP events are associated with coronal mass ejections (CMEs) that drive coronal and interplanetary shocks. These shocks can continuously produce accelerated particles from the ambient medium to well beyond 1 AU. This paper describes an effort to model real SEP events using a Center for Integrated Space weather Modeling (CISM) MHD solar wind simulation including a cone model of CMEs to initiate the related shocks. In addition to providing observation-inspired shock geometry and characteristics, this MHD simulation describes the time-dependent observer field line connections to the shock source. As a first approximation, we assume a shock jump-parameterized source strength and spectrum, and that scatter-free transport occurs outside of the shock source, thus emphasizing the role the shock evolution plays in determining the modeled SEP event profile. Three halo CME events on May 12, 1997, November 4, 1997 and December 13, 2006 are used to test the modeling approach. While challenges arise in the identification and characterization of the shocks in the MHD model results, this approach illustrates the importance to SEP event modeling of globally simulating the underlying heliospheric event. The results also suggest the potential utility of such a model for forcasting and for interpretation of separated multipoint measurements such as those expected from the STEREO mission.
Resumo:
On 15-17 February 2008, a CME with an approximately circular cross section was tracked through successive images obtained by the Heliospheric Imager (HI) instrument onboard the STEREO-A spacecraft. Reasoning that an idealised flux rope is cylindrical in shape with a circular cross-section, best fit circles are used to determine the radial width of the CME. As part of the process the radial velocity and longitude of propagation are determined by fits to elongation-time maps as 252±5 km/s and 70±5° respectively. With the longitude known, the radial size is calculated from the images, taking projection effects into account. The radial width of the CME, S (AU), obeys a power law with heliocentric distance, R, as the CME travels between 0.1 and 0.4 AU, such that S=0.26 R0.6±0.1. The exponent value obtained is compared to published studies based on statistical surveys of in situ spacecraft observations of ICMEs between 0.3 and 1.0 AU, and general agreement is found. This paper demonstrates the new opportunities provided by HI to track the radial width of CMEs through the previously unobservable zone between the LASCO field of view and Helios in situ measurements.
Resumo:
The geospace environment is controlled largely by events on the Sun, such as solar flares and coronal mass ejections, which generate significant geomagnetic and upper atmospheric disturbances. The study of this Sun-Earth system, which has become known as space weather, has both intrinsic scientific interest and practical applications. Adverse conditions in space can damage satellites and disrupt communications, navigation, and electric power grids, as well as endanger astronauts. The Center for Integrated Space Weather Modeling (CISM), a Science and Technology Center (STC) funded by the U.S. National Science Foundation (see http://www.bu.edu/cism/), is developing a suite of integrated physics-based computer models that describe the space environment from the Sun to the Earth for use in both research and operations [Hughes and Hudson, 2004, p. 1241]. To further this mission, advanced education and training programs sponsored by CISM encourage students to view space weather as a system that encompasses the Sun, the solar wind, the magnetosphere, and the ionosphere/thermosphere. This holds especially true for participants in the CISM space weather summer school [Simpson, 2004].
Resumo:
The Cassini flyby of Jupiter occurred at a time near solar maximum. Consequently, the pre-Jupiter data set reveals clear and numerous transient perturbations to the Parker Spiral solar wind structure. Limited plasma data are available at Cassini for this period due to pointing restrictions imposed on the instrument. This renders the identification of the nature of such structures ambiguous, as determinations based on the magnetic field data alone are unreliable. However, a fortuitous alignment of the planets during this encounter allowed us to trace these structures back to those observed previously by the Wind spacecraft near the Earth. Of the phenomena that we are satisfactorily able to trace back to their manifestation at 1 AU, two are identified as being due to interplanetary coronal mass ejections. One event at Cassini is shown to be a merged interaction region, which is formed from the compression of a magnetic cloud by two anomalously fast solar wind streams. The flux-rope structure associated with this magnetic cloud is not as apparent at Cassini and has most likely been compressed and deformed. Confirmation of the validity of the ballistic projections used here is provided by results obtained from a one-dimensional magnetohydrodynamic projection of solar wind parameters measured upstream near the Earth. It is found that when the Earth and Cassini are within a few tens of degrees in heliospheric longitude, the results of this one-dimensional model predict the actual conditions measured at 5 AU to an impressive degree. Finally, the validity of the use of such one-dimensional projections in obtaining quasi-solar wind parameters at the outer planets is discussed.
Resumo:
The objectives were to measure the effects of transition and supplemental barley or rumen-protected protein on visceral tissue mass in dairy cows and the effects of transition and barley on rumen volume and liquid turnover. Cows were individually fed a grass silage-based gestation ration to meet energy and protein requirements for body weight stasis beginning 6 wk before expected calving. A corn silage-based lactation ration was individually fed ad libitum after calving. In the visceral mass study, 36 cows were randomly assigned to one of 3 dietary treatments: basal ration or basal ration plus either 800 g dry matter (DM) of barley meal per day or 750 g DM of rumen-protected soybean protein per day. Cows were slaughtered at 21 and 7 d before expected calving date or at 10 and 22 d postpartum. Visceral mass and rumen papillae characteristics were measured. Diets had little effect on visceral mass. The mass of the reticulo-rumen, small intestine, large intestine, and liver was, or tended to be, greater at 22 d postpartum but not at 10 d postpartum before DM intake had increased. Rumen papillae mass increased at 10 d postpartum, perhaps in response to increased concentrates. Mesenteric fat decreased after calving, reflecting body fat mobilization. Ten rumen-cannulated cows were fed the basal gestation ration alone or supplemented with 880 g of barley meal DM. Rumen volumes and liquid dilution rates were measured at 17 and 8 d before calving and at 10, 20, and 31 d postpartum. Feeding barley had no effects. After calving, rumen DM volume and liquid dilution rate increased, but liquid volume did not increase. Changes in gastrointestinal and liver mass during transition were apparently a consequence of changes in DM intake and nutrient supply and not initiation of lactation per se.
Resumo:
We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet -- matrix-assisted laser desorption/ionisation -- mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. The low-femtomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydroxybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and low-mass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.
Resumo:
Differences in the expression of cell surface proteins between a normal prostate epithelial (1542-NP2TX) and a prostate cancer cell line (1542-CP3TX) derived from the same patient were investigated. A combination of affinity chromatographic purification of biotin-tagged surface proteins with mass spectrometry analysis identified 26 integral membrane proteins and 14 peripheral surface proteins. The findings confirm earlier reports of altered expression in prostate cancer for several cell surface proteins, including ALCAM/CD166, the Ephrin type A receptor, EGFR and the prostaglandin F2 receptor regulatory protein. In addition, several novel findings of differential expression were made, including the voltage-dependent anion selective channel proteins Porin 1 and 2, ecto-5'-nucleotidase (CD73) and Scavenger receptor B1. Cell surface protein expression changed both qualitatively and quantitatively when the cells were grown in the presence of either or both interferon INFalpha and INFgamma. Costimulation with type I and II interferons had additive or synergistic effects on the membrane density of several, mainly peripherally attached surface proteins. Concerted upregulation of surface exposed antigens may be of benefit in immuno-adjuvant-based treatment of interferon-responsive prostate cancer. In conclusion, this study demonstrates that differences in the expression of membrane proteins between normal and prostate cancer cells are reproducibly detectable following vectorial labelling with biotin, and that detailed analysis of extracellular-induced surface changes can be achieved by combining surface-specific labelling with high-resolution two-dimensional gel electrophoresis and mass spectrometry.
Resumo:
The synthesis of dithiocarbamate ligands based on a pyrrole framework is reported. These ligands self-assemble with zinc(II), nickel(II) and copper(II) to afford neutral, dinuclear metallomacrocycles and trinuclear metallocryptands. The assembled metallo compounds have been characterised by a range of techniques, including H-1 NMR, UV-vis spectroscopy, elemental analysis, mass spectrometry and X-ray crystallography. Some preliminary anion binding studies have also been conducted, using electronic spectroscopy and electrochemistry. The nickel macrocycles showed some affinity for acetate, whereas the copper cryptand showed affinity for benzoate anions. The copper cryptand also exhibited a significant electrochemical response to a range of anions.
Resumo:
An amorphous, catechol-based analogue of PEEK ("o-PEEK") has been prepared by a classical step-growth polymerization reaction between catechol and 4,4'-difluorobenzophenone and shown to be readily soluble in a range of organic solvents. Copolymers with p-PEEK have been investigated, including an amorphous 50: 50 composition and a semicrystalline though still organic-soluble material comprising 70% p-PEEK. o-PEEK has also been obtained by entropy-driven ring-opening polymerization of the macrocyclic oligomers (MCO's) formed by cyclo-condensation of catechol with 4,4'-difluorobenzophenone under pseudo-high-dilution conditions. The principal products of this latter reaction were the cyclic dimer 3a (20 wt %), cyclic trimer 3b (16%) cyclic tetramer 3c (14%), cyclic pentamer 3d (13%) and cyclic hexamer 3e (12%). Macrocycles 3a-c were isolated as pure compounds by gradient column chromatography, and the structures of the cyclic dimer 3a and cyclic tetramer 3c were analyzed by single-crystal X-ray diffraction. A mixture of MCO's, 3, of similar composition, was obtained by cyclodepolymerization of high molar mass o-PEEK in dilute soluion.
Resumo:
We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet - matrix-assisted laser desorption/ ionisation - mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. U. Am. Soc. Mass Spectrom. 1998, 9, 166-174). The low-ferntomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydrox-ybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and lowmass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.
Resumo:
Polymetallic nanodimensional assemblies have been prepared via metal directed assembly of dithiocarbamate functionalized cavitand structural frameworks with late transition metals (Ni, Pd, Cu, Au, Zn, and Cd). The coordination geometry about the metal centers is shown to dictate the architecture adopted. X-ray crystallographic studies confirm that square planar coordination geometries result in "cagelike" octanuclear complexes, whereas square-based pyramidal metal geometries favor hexanuclear "molecular loop" structures. Both classes of complex are sterically and electronically complementary to the fullerenes (C-60 and C-70). The strong binding of these guests occurred via favorable interactions with the sulfur atoms of multiple dithiocarbamate moieties of the hosts. In the case of the tetrameric copper(II) complexes, the lability of the copper(II)-dithiocarbamate bond enabled the fullerene guests to be encapsulated in the electron-rich cavity of the host, over time. The examination of the binding of fullerenes has been undertaken using spectroscopic and electrochemical methods, electrospray mass spectrometry, and molecular modeling.
Resumo:
Differences in the expression of cell surface proteins between a normal prostate epithelial (1542-NP2TX) and a prostate cancer cell line (1542-CP3TX) derived from the same patient were investigated. A combination of affinity chromatographic purification of biotin-tagged surface proteins with mass spectrometry analysis identified 26 integral membrane proteins and 14 peripheral surface proteins. The findings confirm earlier reports of altered expression in prostate cancer for several cell surface proteins, including ALCAM/CD166, the Ephrin type A receptor, EGFR and the prostaglandin F2 receptor regulatory protein. In addition, several novel findings of differential expression were made, including the voltage-dependent anion selective channel proteins Porin 1 and 2, ecto-5'-nucleotidase (CD73) and Scavenger receptor B1. Cell surface protein expression changed both qualitatively and quantitatively when the cells were grown in the presence of either or both interferon INF alpha and INF gamma. Costimulation with type I and II interferons had additive or synergistic effects on the membrane density of several, mainly peripherally attached surface proteins. Concerted upregulation of surface exposed antigens may be of benefit in immuno-adjuvant-based treatment of interferon-responsive prostate cancer. In conclusion, this study demonstrates that differences in the expression of membrane proteins between normal and prostate cancer cells are reproducibly detectable following vectorial labelling with biotin, and that detailed analysis of extracellular-induced surface changes can be achieved by combining surface-specific labelling with high-resolution two-dimensional gel electrophoresis and mass spectrometry.