932 resultados para Marine sciences


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Manganese (Mn) is a required element for oceanic phytoplankton as it plays a critical role in photosynthesis, through its unique redox chemistry, as the active site in photosystem II, and in enzymes that act as defenses against reactive oxygen species (ROS), most notably for protection against superoxide (O2?), through the action of superoxide dismutase (SOD), and against hydrogen peroxide (H2O2) via peroxidases and catalases. The distribution and redox speciation of Mn in the ocean is also apparently controlled by reactions with ROS. Here we examine the connections between ROS and dissolved Mn species in the upper ocean using field and laboratory experimental data. Our results suggest it is unlikely that significant concentrations of Mn(III) are produced in the euphotic zone, as in the absence of evidence for the existence of strong Mn(III) ligands, Mn(II) reacts with O2? to form the short-lived transient manganous superoxide, MnO2+, which may react rapidly with other redox species in a manner similar to O2?. Experiments with the strong Mn(III) chelator, desferrioxamine B (DFB), in seawater indicated that the Mn(III) species are unlikely to form, as formation of the precursor Mn(II) complex is hindered due to the stability of the Ca complex with DFB.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present here vertical fluxes of oxygenated volatile organic compounds (OVOCs) measured with eddy covariance (EC) during the period of March to July 2012 near the southwest coast of the United Kingdom. The performance of the proton-transfer-reaction mass spectrometer (PTR-MS) for flux measurement is characterized, with additional considerations given to the homogeneity and stationarity assumptions required by EC. Observed mixing ratios and fluxes of OVOCs (specifically methanol, acetaldehyde, and acetone) vary significantly with time of day and wind direction. Higher mixing ratios and fluxes of acetaldehyde and acetone are found in the daytime and from the direction of a forested park, most likely due to light-driven emissions from terrestrial plants. Methanol mixing ratio and flux do not demonstrate consistent diel variability, suggesting sources in addition to plants. We estimate air-sea exchange and photochemical rates of these compounds, which are compared to measured vertical fluxes. For acetaldehyde, the mean (1 sigma) mixing ratio of 0.13 (0.02) ppb at night may be maintained by oceanic emission, while photochemical destruction out-paces production during the day. Air-sea exchange and photochemistry are probably net sinks of methanol and acetone in this region. Their nighttime mixing ratios of 0.46 (0.20) and 0.39 (0.08) ppb appear to be affected more by terrestrial emissions and long-distance transport, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air-sea methanol transfer along a similar to 10,000-km north-south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air-sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at similar to 5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface-an important term for improving air-sea gas exchange models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inter-annual variability in the timing of phytoplankton spring bloom and phytoplankton community structure in the central North Atlantic Ocean was quantified using ocean color data and continuous plankton recorder (CPR) data. This variability was related to the North Atlantic Oscillation using correlation analysis and multivariate auto-regression models. The initiation of the spring bloom derived from CPR phytoplankton color index data is similar to that derived from satellite chlorophyll, and exhibits a nominal correlation with the sea surface temperature (SST) and the North Atlantic Oscillation (NAO). The extrapolated spring bloom timing suggested later initiation of blooms in the mid-1980s and earlier initiation of blooms in the 1990s. The climatological phytoplankton community structure in the central North Atlantic is dominated by diatoms, except for a shift in community composition favoring dinoflagellates in August. The ratio of diatoms to total phytoplankton abundance and the ratio of dinoflagellates to total phytoplankton abundance are both closely correlated with the NAO and SST. The extended time series of phytoplankton community structure between 1985 and 2009, deduced from the time series of SST and NAO over the same interval, showed a decadal shift away from diatoms towards dinoflagellates. The linkages between the NAO, and changes in stratification and phytoplankton processes occur over a larger scale than previously observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I). The input of marine halogens to the stratosphere has been estimated from observations and modelling studies using low-resolution oceanic emission scenarios derived from top-down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface observations within the HalOcAt (Halocarbons in the Ocean and Atmosphere) database (https://halocat.geomar.de/). Global maps of marine and atmospheric surface concentrations are derived from the data which are divided into coastal, shelf and open ocean regions. Considering physical and biogeochemical characteristics of ocean and atmosphere, the open ocean water and atmosphere data are classified into 21 regions. The available data are interpolated onto a 1 degrees x 1 degrees grid while missing grid values are interpolated with latitudinal and longitudinal dependent regression techniques reflecting the compounds' distributions. With the generated surface concentration climatologies for the ocean and atmosphere, global sea-to-air concentration gradients and sea-to-air fluxes are calculated. Based on these calculations we estimate a total global flux of 1.5/2.5 Gmol Br yr(-1) for CHBr3, 0.78/0.98 Gmol Br yr(-1) for CH2Br2 and 1.24/1.45 Gmol Br yr(-1) for CH3I (robust fit/ordinary least squares regression techniques). Contrary to recent studies, negative fluxes occur in each sea-to-air flux climatology, mainly in the Arctic and Antarctic regions. "Hot spots" for global polybromomethane emissions are located in the equatorial region, whereas methyl iodide emissions are enhanced in the subtropical gyre regions. Inter-annual and seasonal variation is contained within our flux calculations for all three compounds. Compared to earlier studies, our global fluxes are at the lower end of estimates, especially for bromoform. An under-representation of coastal emissions and of extreme events in our estimate might explain the mismatch between our bottom-up emission estimate and top-down approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atmospheric inputs of mineral dust supply iron and other trace metals to the remote ocean and can influence the marine carbon cycle due to iron's role as a potentially limiting micronutrient. Dust generation, transport, and deposition are highly heterogeneous, and there are very few remote marine locations where dust concentrations and chemistry (e.g., iron solubility) are routinely monitored. Here we use aerosol and rainwater samples collected during 10 large-scale research cruises to estimate the atmospheric input of iron, aluminum, and manganese to four broad regions of the Atlantic Ocean over two 3 month periods for the years 2001–2005. We estimate total inputs of these metals to our study regions to be 4.2, 17, and 0.27 Gmol in April–June and 4.9, 14, and 0.19 Gmol in September–November, respectively. Inputs were highest in regions of high rainfall (the intertropical convergence zone and South Atlantic storm track), and rainfall contributed higher proportions of total input to wetter regions. By combining input estimates for total and soluble metals for these time periods, we calculated overall percentage solubilities for each metal that account for the contributions from both wet and dry depositions and the relative contributions from different aerosol types. Calculated solubilities were in the range 2.4%–9.1% for iron, 6.1%–15% for aluminum, and 54%–73% for manganese. We discuss sources of uncertainty in our estimates and compare our results to some recent estimates of atmospheric iron input to the Atlantic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The calcifying coccolithophores have been proposed as a potentially vulnerable group in the face of increasing surface ocean CO2 levels. A full understanding of the likely responses of this group requires better mechanistic information on pH- and CO2-sensitive processes that underlie cell function at molecular, cellular and population levels. New findings on the mechanisms of pH homeostasis at a molecular and cellular level in both diatoms and coccolithophores are shaping our understanding of how these important groups may respond or acclimate to changing ocean pH. Critical parameters including intracellular pH homeostasis and cell surface pH will be considered. These studies are being carried out in parallel with genetic studies of natural oceanic populations to assess the natural genetic and physiological diversity that will underlie adaptation of populations in the long term.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to determine the role of light on the succession of the phytoplankton community during the spring bloom in the northwestern Mediterranean Sea. To this end, three successive Lagrangian experiments were carried out between March and April 2003. The three experiments correspond to distinct phases of the bloom development (pre-bloom, bloom peak and post-bloom, respectively) and therefore to different trophic conditions. Phytoplankton (sampled on a daily scale) was grouped in size-based classes (pico and nano+micro) each of them were characterised in terms of chemotaxonomic composition, primary production and photophysiological properties. The phytoplankton community evolved with time changing in both size-class dominance and specie/group dominance within each size class. The bloom peak was characterised by highly dynamic condition (i.e. vertical mixing) and by the dominance of both small (pico) and large (nano and micro) diatoms, as a result of their capacity to photoacclimate to changing light regimes (‘physiological plasticity’). Concluding, we suggest that the physiological adaptation to light is the main factor driving the succession of the phytoplankton community during the first phases of the bloom (until the onset of thermal stratification) in the western Mediterranean Sea.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim Recent studies have suggested that global diatom distributions are not limited by dispersal, in the case of both extant species and fossil species, but rather that environmental filtering explains their spatial patterns. Hubbell's neutral theory of biodiversity provides a framework in which to test these alternatives. Our aim is to test whether the structure of marine phytoplankton (diatoms, dinoflagellates and coccolithophores) assemblages across the Atlantic agrees with neutral theory predictions. We asked: (1) whether intersite variance in phytoplankton diversity is explained predominantly by dispersal limitation or by environmental conditions; and (2) whether species abundance distributions are consistent with those expected by the neutral model. Location Meridional transect of the Atlantic (50 degrees N50 degrees S). Methods We estimated the relative contributions of environmental factors and geographic distance to phytoplankton composition using similarity matrices, Mantel tests and variation partitioning of the species composition based upon canonical ordination methods. We compared the species abundance distribution of phytoplankton with the neutral model using Etienne's maximum-likelihood inference method. Results Phytoplankton communities are slightly more determined by niche segregation (24%), than by dispersal limitation and ecological drift (17%). In 60% of communities, the assumption of neutrality in species' abundance distributions could not be rejected. In tropical zones, where oceanic gyres enclose large stable water masses, most communities showed low species immigration rates; in contrast, we infer that communities in temperate areas, out of oligotrophic gyres, have higher rates of species immigration. Conclusions Phytoplankton community structure is consistent with partial niche assembly and partial dispersal and drift assembly (neutral processes). The role of dispersal limitation is almost as important as habitat filtering, a fact that has been largely overlooked in previous studies. Furthermore, the polewards increase in immigration rates of species that we have discovered is probably caused by water mixing conditions and productivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The efficiency of transfer of gases and particles across the air-sea interface is controlled by several physical, biological and chemical processes in the atmosphere and water which are described here (including waves, large- and small-scale turbulence, bubbles, sea spray, rain and surface films). For a deeper understanding of relevant transport mechanisms, several models have been developed, ranging from conceptual models to numerical models. Most frequently the transfer is described by various functional dependencies of the wind speed, but more detailed descriptions need additional information. The study of gas transfer mechanisms uses a variety of experimental methods ranging from laboratory studies to carbon budgets, mass balance methods, micrometeorological techniques and thermographic techniques. Different methods resolve the transfer at different scales of time and space; this is important to take into account when comparing different results. Air-sea transfer is relevant in a wide range of applications, for example, local and regional fluxes, global models, remote sensing and computations of global inventories. The sensitivity of global models to the description of transfer velocity is limited; it is however likely that the formulations are more important when the resolution increases and other processes in models are improved. For global flux estimates using inventories or remote sensing products the accuracy of the transfer formulation as well as the accuracy of the wind field is crucial.