976 resultados para Main Crops
Resumo:
The competition between weeds and crops is a topic of great interest, since this interaction can cause heavy losses in agriculture. Despite the existence of some studies on this subject, little is known about the importance of soil microorganisms in the modulation of weed-crop interactions. Plants compete for water and nutrients in the soil and the ability of a given species to use the available resources may be directly affected by the presence of some microbial groups commonly found in the soil. Arbuscular mycorrhizal fungi (AMF) are able to associate with plant roots and affect the ability of different species to absorb water and nutrients from the soil, promoting changes in plant growth. Other groups may promote positive or negative changes in plant growth, depending on the identity of the microbial and plant partners involved in the different interactions, changing the competitive ability of a given species. Recent studies have shown that weeds are able to associate with mycorrhizal fungi in agricultural environments, and root colonization by these fungi is affected by the presence of other weeds or crops species. In addition, weeds tend to have positive interactions with soil microorganisms while cultures may have neutral or negative interactions. Competition between weeds and crops promotes changes in the soil microbial community, which becomes different from that observed in monocultures, thus affecting the competitive ability of plants. When grown in competition, weeds and crops have different behaviors related to soil microorganisms, and the weeds seem to show greater dependence on associations with members of the soil microbiota to increase growth. These data demonstrate the importance of soil microorganisms in the modulation of the interactions between weeds and crops in agricultural environments. New perspectives and hypotheses are presented to guide future research in this area.
Resumo:
The seed bank is characterized by the amount of seeds and other viable reproductive structures in the soil and it is changed by the input and output of seeds, being classified by its permanence in the soil as transient or permanent. The tillage and crops used decisively influence this dynamic and more disturbed areas tend to have richer seed banks. The purpose of this study was to test different soil tillage and crop systems, aiming to reduce or eliminate the ryegrass in the area. The experiment was conducted from 2010 to 2012. In the first year, the effect of chemical tillage was assessed, compared to the area without tillage. From the second year on, in the area that received chemical tillage, the second experiment was installed, where it was assessed the effect of soil tillage and crop rotation in the ryegrass seed yield. The soil tillage treatment was chisel plow and non-chisel plow. The crop rotation was: fallow/soybean; wheat/soybean; black oat/maize. The samples of soil were taken three times a year and split in 0-5, 5-10, 10-15 and 15-20 cm. After sampling, the seeds were separated from the soil and sterilized. Afterwards, germination and tetrazolium test were conducted. In the same plots used for soil sampling, the emergence flow of ryegrass was assessed in the winter 2011 and 2012. In the first year it was observed that chemical tillage had considerably reduced the amount of ryegrass in the soil. The crop rotations used were more effective than soil tillage in reducing the seed banks in the soil. The rotation oat/maize and wheat/soybean, in only two years, practically zeroed the ryegrass seed banks in the area.
Resumo:
ABSTRACTWhite clover is tolerant to many herbicides, making difficult a chemical control of this species during soybean crop establishments. The objective of this research was to select herbicides applied postemergence to control white clover in soybean and know the effects of this control on soybean yield. Seven herbicides were assessed, applied postemergence, with or without sequential application of glyphosate, and two control treatments (no control and total control of white clover). Glyphosate (with two sequential applications), fomesafen (with a sequential application of glyphosate), chlorimuron-ethyl and lactofen have shown a satisfactory control of white clover (above 80%). The lower control efficiency has resulted in lower production of soybeans.
Resumo:
ABSTRACTInadequate herbicide application can result in failures in weed control and/or poisoning of the crops, resulting in yield losses. In this research were assessed the effects of the sprayer nozzle boom height in the distribution of the spray solution for weed control, influencing intoxication of beans and crop yield. Experiments were conducted in laboratory and field conditions. In laboratory, the performance of flat spray tip TT 11002 was assessed at heights 0.20, 0.30, 0.40 and 0.50 meters with respect to the target surface. In the field the same heights were assessed in applications of herbicides fomesafen, fluazifop-P-butyl and fomesafen + fluazifop-P-butyl. There was an inverse relationship between the height of the spray boom and the coefficients of variation of the patterns. The mixture better efficiency in a tank of fluazifop-P-butyl + fomesafen was obtained with the height of 0.50 m from the target. This treatment resulted in better weed control, lower poisoning of the bean plants and better crop yield rates.
Resumo:
ABSTRACT One of the factors that can influence soybeans yield is the interference imposed by weeds. This research has aimed to determine the critical period of weed interference on cv. INT 6100 RRTM soybeans. The experiment was conducted under field conditions at Campo Mourão County, Parana State, in the 2013/2014 harvest, using randomized blocks, arranged in a 2 x 8 factorial, with four replications. In the first factor, the coexistence (period before weed interference) and control (total period of weed interference prevention) periods were assessed. The second factor consisted of management times of weed species (0, 7, 14, 28, 35, 49, 56 and 130 days after emergence - DAE). The evaluations performed were density and shoot dry matter of the weed community, height, number of pods, thousand grain weight and soybean yield. Among the weed species in soybean crops, there was predominance of eudicotyledonous ones (82%). The yield results allowed establishing, for cv. INT 6100 RRTM soybeans at Campo Mourão County, Parana State, a critical period for preventing interference between 24-38 DAE.
Resumo:
ABSTRACT Weeds have the potential to dramatically interfere in cassava cultivation, reducing its productive potential; however, there are few studies on the selective herbicides in this crop. Therefore, the objective was to evaluate in this work the selectivity and efficiency of sulfentrazone in cassava crops grown in sandy and clayey soils. Two experiments were carried out: The first one was carried out in sandy soil conditions in the conventional system; and the second one was carried out in clayey soil conditions in the no-tillage system. The experimental design was a randomized block with four replications. The treatments consisted in doses of 250, 500, 750 and 1,000 g ha-1 of sulfentrazone, and weeded and non-weeded controls. Sulfentrazone application in cassava crops has linearly reduced the production of roots in a proportion of 0.0153 and 0.0107 t ha-1 at each increment in grams of the active ingredient, respectively. It was concluded that sulfentrazone was not selective for cassava crops grown both in sandy and in clayey soil; however, it was highly effective in weed control in both soils.
Resumo:
The allelopathic effect studied in many cultures has currently generated great expectations that displayed a natural and environmentally friendly tool for weed management using bioherbicides. The objective of this work was to assess allelopathic influence of residues of S. trilobata on the germination and growth of weeds, as well as their relation with some crops and effects on soil properties. Results show that residues from S. trilobata have inhibited the germination of weeds (31.6 - 72%), increasingly with the applied dose. All residue doses of this specie have inhibited dicotyledonous germination, but only maximum concentration has affected monocotyledons. The residues did not affect onion germination, but stimulated it in radish and tomato, while the dose applied at 50% produced tomato stimulation and inhibition of cabbage. The effects of residues on hypocotyl growth in different crops showed changes in species response. For onion, the three doses had negative effects on the growth of hypocotyl, while tomato was stimulated. For radish, the growth was hindered by any dose applied, and were only different (50 and 100%) compared to control. For cabbage, only hypocotyl length was stimulated, when maximum dose (100%) was applied. For the radicle growth, in onion and radish no differences were found compared to control. While the tomato radicle growth was inhibited, in cabbage, all doses encouraged the elongation of the radicle. The dry mass of weed was affected by increased dose of residue (0.49 - 8.8 g m-2), however the soil microflora was stimulated, while the population of Azotobacter spp. was not affect. Some soil properties were affected, the level of organic material, Na+ and electrical conductivity were increased, while pH (H2O) decreased a bit, however it remained basic.
Resumo:
(Diameter and height distributions in a gallery forest tree community and some of its main species in central Brazil over a six-year period (1985-1991)). The diameter and height structure were studied over six years in approximately 64 ha of the Gama gallery forest in Brasília, DF. Trees from 10 cm dbh were measured every three years from 1985 in 151 (10 x 20 m) permanent plots. Natural regeneration (individuals under 10 cm dbh) was measured in subplots within the 200 m² plots. Most individuals and species were under 45 cm diameter and 20 m high while the maximum diameter for individual species ranged from 30 to 95 cm. The diameter structure was typical of a mixed tropical forest with the number of individuals decreasing with increasing size classes and showing little change over the six years. The most abundant species occupy different positions in the canopy and have different size structures.
Resumo:
The Guayana Shield, located in north-eastern South America, consists of a highly complex and composite mosaic of landscape elements. Amongst these, inselbergs are very conspicuous, because of their peculiar shape and their unusual associated vegetation. Geologically, these rock outcrops are part of the underlying ancient igneous-metamorphic basement and occur mainly in the lowlands of the periphery of the shield. As azonal habitats, inselbergs harbour a highly specialized flora. The characteristic vegetation is composed of lithophytic and savanna-like plant communities, as well as low dry forests. As a whole, the vegetation of an inselberg may be interpreted as a mosaic of marginal habitats. Therefore a large number of taxa find suitable niches in a quite condensed space. Gradients of soil depth and water availability are the main factors determining the floristic composition. A preliminary floristic inventory of the Venezuelan inselberg flora comprises 614 vascular plant species. 24% of them are endemic to the Guayana region, 15% are endemic to inselbergs of the Guayana region. The distribution patterns of these latter, eco-endemic species allows to distinguish a northern and a southern inselberg district. The two districts overlap in the Átures area, in the surroundings of Puerto Ayacucho, where a true centre of endemism is located. The distinction into two districts is emphasised by different phytogeographic relations. The southern inselberg district shows connections to the "tepui" flora, whereas the northern district reveals phytogeographic relations to the Caribbean region as well as to the Brazilian Shield. Possible explanations for the floristic interchange across the equator are discussed.
Resumo:
The main generator source of a longitudinal muscle contraction was identified as an M (mechanical-stimulus-sensitive) circuit composed of a presynaptic M-1 neuron and a postsynaptic M-2 neuron in the ventral nerve cord of the earthworm, Amynthas hawayanus, by simultaneous intracellular response recording and Lucifer Yellow-CH injection with two microelectrodes. Five-peaked responses were evoked in both neurons by a mechanical, but not by an electrical, stimulus to the mechanoreceptor in the shaft of a seta at the opposite side of an epidermis-muscle-nerve-cord preparation. This response was correlated to 84% of the amplitude, 73% of the rising rate and 81% of the duration of a longitudinal muscle contraction recorded by a mechano-electrical transducer after eliminating the other possible generator sources by partitioning the epidermis-muscle piece of this preparation. The pre- and postsynaptic relationship between these two neurons was determined by alternately stimulating and recording with two microelectrodes. Images of the Lucifer Yellow-CH-filled M-1 and M-2 neurons showed that both of them are composed of bundles of longitudinal processes situated on the side of the nerve cord opposite to stimulation. The M-1 neuron has an afferent process (A1) in the first nerve at the stimulated side of this preparation and the M-2 neuron has two efferent processes (E1 and E3) in the first and third nerves at the recording side where their effector muscle cell was identified by a third microelectrode.
Resumo:
A constant facilitation of responses evoked in the earthworm muscle contraction generator neurons by responses evoked in the neurons of its peripheral nervous system was demonstrated. It is based on the proposal that these two responses are bifurcations of an afferent response evoked by the same peripheral mechanical stimulus but converging again on this central neuron. A single-peaked generator response without facilitation was demonstrated by sectioning the afferent route of the peripheral facilitatory modulatory response, or conditioning response (CR). The multipeaked response could be restored by restimulating the sectioned modulatory neuron with an intracellular substitutive conditioning stimulus (SCS). These multi-peaked responses were proposed to be the result of reverberating the original single peaked unconditioned response (UR) through a parallel (P) neuronal circuit which receives the facilitation of the peripheral modulatory neuron. This peripheral modulatory neuron was named "Peri-Kästchen" (PK) neuron because it has about 20 peripheral processes distributed on the surface of a Kästchen of longitudinal muscle cells on the body wall of this preparation as revealed by the Lucifer Yellow-CH-filling method.
Resumo:
Responses evoked in the earthworm, Amynthas hawayanus, main muscle contraction generator M-2 (postsynaptic mechanical-stimulus-sensitive) neuron by threshold mechanical stimuli in 2-s intertrial intervals (ITI) were used as the control or unconditioned responses (UR). Their attenuation induced by decreasing these intervals in non-associative conditioning and their enhancement induced by associating the unconditioned stimuli (US) to a train of short (0.1 s) hyperpolarizing electrical substitutive conditioning stimuli (SCS) in the Peri-Kästchen (PK) neuron were measured in four parameters, i.e., peak numbers (N) and amplitude ()averaged from 120 responses, sum of these amplitudes (SAMP) and the highest peak amplitude (V) over a period of 4 min. Persistent attenuation similar to habituation was induced by decreasing the control ITI to 0.5 s and 2.0 s in non-associative conditioning within less than 4 min. Dishabituation was induced by randomly pairing one of these habituated US to an electrical stimulus in the PK neuron. All four parameters of the UR were enhanced by forward (SCS-US), but not backward (US-SCS), association of the US with 25, 100 and 250-Hz trains of SCS with 40-ms interstimulus intervals (ISI) for 4 min and persisted for another 4 min after turning off the SCS. The enhancement of these parameters was proportional to the SCS frequencies in the train. No UR was evoked by the SCS when the US was turned off after 4 min of classical conditioning.
Resumo:
DNA-based immunization has initiated a new era of vaccine research. One of the main goals of gene vaccine development is the control of the levels of expression in vivo for efficient immunization. Modifying the vector to modulate expression or immunogenicity is of critical importance for the improvement of DNA vaccines. The most frequently used vectors for genetic immunization are plasmids. In this article, we review some of the main elements relevant to their design such as strong promoter/enhancer region, introns, genes encoding antigens of interest from the pathogen (how to choose and modify them), polyadenylation termination sequence, origin of replication for plasmid production in Escherichia coli, antibiotic resistance gene as selectable marker, convenient cloning sites, and the presence of immunostimulatory sequences (ISS) that can be added to the plasmid to enhance adjuvanticity and to activate the immune system. In this review, the specific modifications that can increase overall expression as well as the potential of DNA-based vaccination are also discussed.
Resumo:
Kartta kuuluu A. E. Nordenskiöldin kokoelmaan
Resumo:
The essential amino acids lysine and threonine are synthesized in higher plants via a pathway starting with aspartate that also leads to the formation of methionine and isoleucine. Lysine is one of most limiting amino acids in plants consumed by humans and livestock. Recent genetic, molecular, and biochemical evidence suggests that lysine synthesis and catabolism are regulated by complex mechanisms. Early kinetic studies utilizing mutants and transgenic plants that over-accumulate lysine have indicated that the major step for the regulation of lysine biosynthesis is at the enzyme dihydrodipicolinate synthase. Despite this tight regulation, recent strong evidence indicates that lysine catabolism is also subject to control, particularly in cereal seeds. The challenge of producing crops with a high-lysine concentration in the seeds appeared to be in sight a few years ago. However, apart from the quality protein maize lines currently commercially available, the release of high-lysine crops has not yet occurred. We are left with the question, is the production of high-lysine crops still a challenge?