964 resultados para Magnetic recorders and recording
Resumo:
Far-infrared transitions in polar semiconductors are known to be affected by the presence of shallow donor impurities, external magnetic fields and the electron-LO-phonon interaction. We calculate the magnetodonor states in indium phosphide by a diagonalization procedure, and introduce the electron-phonon interaction by the Frohlich term. The main effects of this perturbation are calculated by a multi-level version of the Wigner-Brillouin theory. We determine the transition energies, from the ground state to excited states, and find good qualitative agreement with recently reported absorption-spectroscopy measurements in the 100-800 cm(-1) range, with applied magnetic fields up to 30 T. Our calculations suggest that experimental peak splittings in the 400-450 cm(-1) range are due to the electron-phonon interaction.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Anomalous thermal behavior on the EPR linewidths has been observed for Gd impurities diluted in CexA1-xBn (A=La,Y, B=Ir,Os,Rh,Pd) intermediate-valence compounds. In this work we show that the exchange interaction between the local magnetic moments and the intermediate-valence host ions has an important contribution to the relaxation rates of the local moments. We calculated the relaxation, using the Redfield formalism and the ideas contained in the interconfigurational fluctuation model of Hirst. We show that the exchange interaction contribution has an exponential dependence on the excitation energy of the intermediate-valence ions. © 1992 The American Physical Society.
Resumo:
We write the London limit of the Lawrence Doniach free energy in terms of the local magnetic field and of the average supercurrent over the interplane distance. Starting from this formulation we study a model where the supercurrent at the buffer layers is obtained from the superconducting sheets by a Taylor expansion. The continuum limit of this model gives corrections to the anisotropic London theory due to the layered structure.
Resumo:
Ergosterol peroxide, a presumed product of the H2O2-dependent enzymatic oxidation of ergosterol, has been isolated from yeast from yeast forms of the pathogenic fungus Sporothrix schenckii. The substance, which may have a role in fungal virulence, has been characterized mainly using spectroscopic methods (1H and 13C nuclear magnetic resonance and high resolution mass spectra). The purified compound showed a molecular formula of C28H44O3, displaying characteristic features of epidioxy sterols and was reverted to ergosterol when submitted to S. schenckii enzymatic extract.
Resumo:
Generalized nucleon polarizabilities for virtual photons can be defined in terms of electroproduction cross sections as function of the 4-momentum transfer Q2. In particular, the sum of the generalized electric and magnetic polarizabilities ∑ = α + β and the spin polarizability γ can be expressed by virtual photon absorption cross sections integrated over the excitation energy. These quantities have been calculated within the framework of the recently developed unitary isobar model for pion photo- and electroproduction on the proton, which describes the available experimental data up to an excitation energy of about 1 GeV. Our results have been compared to the predictions of chiral perturbation theory. © 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Oral administration with solid dosage forms is a common route in the drug therapy widely used. The drug release by the disintegration process occurs in several gastrointestinal tract (GIT) regions. AC Biosusceptometry (ACB) was originally proposal to characterize the disintegration process of tablets in vitro and in the human stomach, through changes in magnetic signals. The aim of this work was to employ a multisensor ACB system to monitoring magnetic tablets and capsules in the human GIT and to obtain the magnetic images of the disintegration process. The ACB showed accuracy to quantify the gastric residence time, the intestinal transit time and the magnetic images allowed to visualize the disintegration of magnetic formulations in the GIT. The ACB is a non-invasive, radiation free technique, completely safe and harmless to the volunteers and had demonstrated potential to evaluate pharmaceutical dosage forms in the human gastrointestinal tract. © 2005 IEEE.
Resumo:
The biomagnetic technique called Alternate Current Biosusceptometry (ACB) is a proposal to evaluate a multiparticulate drug delivery system in the human gastrointestinal tract. Results show that ACB was able to quantify the gastrointestinal transit and spreading of the magnetic material and is an attractive tool for pharmaceutical research. © 2007.
Resumo:
The alternate current biosusceptometry (ACB) is a biomagnetic technique used to study some physiological parameters associated with gastrointestinal (GI) tract. For this purpose it applies an AC magnetic field and measures the response originating from magnetic marks or tracers. This paper presents an equipment based on the ACB which uses anisotropic magnetoresistive (AMR) sensors and an inexpensive electronic support. The ACB-AMR developed consists of a square array of 6x6 sensors arranged in a firstorder gradiometer configuration with one reference sensor. The equipment was applied to capture magnetic images of different phantoms and to acquire gastric contraction activity of healthy rats. The results show a reasonable sensitivity and spatial-temporal resolution, so that it may be applied for imaging of phantoms and signal acquisition of the GI tract of small animals. © 2010 IEEE.
Resumo:
A hybrid magnetic instrumentation to detect a magnetic field from a permanent magnet, and to detect magnetic markers and tracers using alternating current biosusceptometry (ACB) is discussed. The instrument was used to in vitro evaluation of the esophageal transit time. The sensitivity between both magnetic methods was compared, showing sensitivity for in vivo applications. © 2013 Springer-Verlag.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper the dynamical interactions of a double pendulum arm and an electromechanical shaker is investigated. The double pendulum is a three degree of freedom system coupled to an RLC circuit based nonlinear shaker through a magnetic field, and the capacitor voltage is a nonlinear function of the instantaneous electric charge. Numerical simulations show the existence of chaotic behavior for some regions in the parameter space and this behaviour is characterized by power spectral density and Lyapunov exponents. The bifurcation diagram is constructed to explore the qualitative behaviour of the system. This kind of electromechanical system is frequently found in robotic systems, and in order to suppress the chaotic motion, the State-Dependent Riccati Equation (SDRE) control and the Nonlinear Saturation control (NSC) techniques are analyzed. The robustness of these two controllers is tested by a sensitivity analysis to parametric uncertainties.
Resumo:
Over the past three decades, the decline and altered spatial distribution of the western stock of Steller sea lions (Eumetopias jubatus) in Alaska have been attributed to changes in the distribution or abundance of their prey due to the cumulative effects of fisheries and environmental perturbations. During this period, dietary prey occurrence and diet diversity were related to population decline within metapopulation regions of the western stock of Steller sea lions, suggesting that environmental conditions may be variable among regions. The objective of this study, therefore, was to examine regional differences in the spatial and temporal heterogeneity of oceanographic habitat used by Steller sea lions within the context of recent measures of diet diversity and population trajectories. Habitat use was assessed by deploying satellite-depth recorders and satellite relay data loggers on juvenile Steller sea lions (n = 45) over a five-year period (2000–2004) within four regions of the western stock, including the western, central, and eastern Aleutian Islands, and central Gulf of Alaska. Areas used by sea lions during summer months (June, July, and August) were demarcated using satellite telemetry data and characterized by environmental variables (sea surface temperature [SST] and chlorophyll a [chl a]), which possibly serve as proxies for environmental processes or prey. Spatial patterns of SST diversity and Steller sea lion population trends among regions were fairly consistent with trends reported for diet studies, possibly indicating a link between environmental diversity, prey diversity, and distribution or abundance of Steller sea lions. Overall, maximum spatial heterogeneity coupled with minimal temporal variability of SST appeared to be beneficial for Steller sea lions. In contrast, these patterns were not consistent for chl a, and there appeared to be an ecological threshold. Understanding how Steller sea lions respond to measures of environmental heterogeneity will ultimately be useful for implementing ecosystem management approaches and developing additional conservation strategies.