982 resultados para Magnetic Properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we report the magnetic properties of sputtered Permalloy (Py: Ni80Fe20)/molybdenum (Mo) multilayer thin films. We show that it is possible to maintain a low coercivity and a high permeability in thick sputtered Py films when reducing the out-of-plane component of the anisotropy by inserting thin film spacers of a non-magnetic material like Mo. For these kind of multilayers, we have found coercivities which are close to those for single layer films with no out-of-plane anisotropy. The coercivity is also dependent on the number of layers exhibiting a minimum value when each single Py layer has a thickness close to the transition thickness between Neel and Bloch domain walls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have analyzed the structural and magnetic properties of as-grown and annealed [TbFe2/Fe3Ga]n heterostructures grown by sputtering. Evidence of the bcc structure in the Fe3Ga layers has been found. The diffraction peak related to this structure shifts to high angles with the annealing temperature. Also, we have observed a change in the microstructure of the Tb-Fe layers when the thickness layer is reduced in the as-grown heterostructures. Moreover, the Tb content is lower than 33% of the TbFe2 Laves phase and it depends on the layer thickness. The thermal treatments promote the increase of the Tb content, but only in the heterostructures with thick layers. The strong lattice mismatch between the Tb-Fe and Fe-Ga layers seems to prevent a complete Tb diffusion upon the annealing process. Thus, the crystallization of the TbFe2 Laves phase is inhibited in the heterostructures with thin layers, although our experimental results indicate the presence of potential magnetostrictive TbFeGa alloys

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to study the magnetic properties of annealed [Fe3Ga/TbFe2]n heterostructures grown by sputtering at room temperature. The interest of investigating multilayers comprised of TbFe2 and Fe3Ga is their complementary properties in terms of coercivity and magnetostriction. We have studied the thickness combination which optimizes the magnetic and magnetostrictive properties of the annealed multilayers. The crystallization of the Laves phase upon the thermal treatment in heterostructures with thick TbFe2 layers promotes the increase of the coercivity. This crystallization seems to be prevented by the low mechanical stiffness of the Fe3Ga. [Fe3Ga/TbFe2]n heterostructures show promising characteristics, λ of 340 ppm and a HC of 220 Oe, for the development of new magnetostrictive devices.