795 resultados para MULLERS MUSCLE EXCISION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skeletal muscle is considered to be a major site of energy expenditure and thus is important in regulating events affecting metabolic disorders. Over the years, both in vitro and in vivo approaches have established the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in fatty acid metabolism and energy expenditure in skeletal muscles. Pharmacological activation of PPARβ/δ by specific ligands regulates the expression of genes involved in lipid use, triglyceride hydrolysis, fatty acid oxidation, energy expenditure, and lipid efflux in muscles, in turn resulting in decreased body fat mass and enhanced insulin sensitivity. Both the lipid-lowering and the anti-diabetic effects exerted by the induction of PPARβ/δ result in the amelioration of symptoms of metabolic disorders. This review summarizes the action of PPARβ/δ activation in energy metabolism in skeletal muscles and also highlights the unexplored pathways in which it might have potential effects in the context of muscular disorders. Numerous preclinical studies have identified PPARβ/δ as a probable potential target for therapeutic interventions. Although PPARβ/δ agonists have not yet reached the market, several are presently being investigated in clinical trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of amino acid and/or glucose administration before and during exercise on protein metabolism in visceral tissues and skeletal muscle was examined in mongrel dogs. The dogs were subjected to treadmill running (150 minutes at 10 km/h and 12% incline) and intravenously infused with a solution containing amino acids and glucose (AAG), amino acids (AA), glucose (G) or saline (S) in randomized order. The infusion was started 60 minutes before exercise and continued until the end of the exercise period. An arteriovenous-difference technique was used to estimate both tissue protein degradation and synthesis. When S was infused, the release of leucine (Leu) from the gut and phenylalanine (Phe) from the hindlimb significantly increased during exercise, thus indicating that exercise augmented proteolysis in these tissues. The balance of Leu across the gut during exercise demonstrated a net uptake with both AAG and AA, whereas a net release was observed for G and S. In addition, Leu uptake in the gut during the last 90 minutes of the exercise period tended to be greater with AAG versus AA (P = .06). Phe balance across the hindlimb during the late exercise period showed a significant release with S, AA, and G, whereas the balance with AAG did not show a significant release. These results suggest that exercise-induced proteolysis in the gut may be reduced by supplementation with AA, and this effect may be enhanced by concomitant G administration. However, in skeletal muscle, both AA and G may be required to prevent net protein degradation during exercise. G provided without AA did not achieve net protein synthesis in either tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammation participates in tissue repair through multiple mechanisms including directly regulating the cell fate of resident progenitor cells critical for successful regeneration. Upon surveying target cell types of the TNF ligand TWEAK, we observed that TWEAK binds to all progenitor cells of the mesenchymal lineage and induces NF-kappaB activation and the expression of pro-survival, pro-proliferative and homing receptor genes in the mesenchymal stem cells, suggesting that this pro-inflammatory cytokine may play an important role in controlling progenitor cell biology. We explored this potential using both the established C2C12 cell line and primary mouse muscle myoblasts, and demonstrated that TWEAK promoted their proliferation and inhibited their terminal differentiation. By generating mice deficient in the TWEAK receptor Fn14, we further showed that Fn14-deficient primary myoblasts displayed significantly reduced proliferative capacity and altered myotube formation. Following cardiotoxin injection, a known trigger for satellite cell-driven skeletal muscle regeneration, Fn14-deficient mice exhibited reduced inflammatory response and delayed muscle fiber regeneration compared with wild-type mice. These results indicate that the TWEAK/Fn14 pathway is a novel regulator of skeletal muscle precursor cells and illustrate an important mechanism by which inflammatory cytokines influence tissue regeneration and repair. Coupled with our recent demonstration that TWEAK potentiates liver progenitor cell proliferation, the expression of Fn14 on all mesenchymal lineage progenitor cells supports a broad involvement of this pathway in other tissue injury and disease settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequential conversion of estradiol (E) to 2/4-hydroxyestradiols and 2-/4-methoxyestradiols (MEs) by CYP450s and catechol-O-methyltransferase, respectively, contributes to the inhibitory effects of E on smooth muscle cells (SMCs) via estrogen receptor-independent mechanisms. Because medroxyprogesterone (MPA) is a substrate for CYP450s, we hypothesized that MPA may abrogate the inhibitory effects of E by competing for CYP450s and inhibiting the formation of 2/4-hydroxyestradiols and MEs. To test this hypothesis, we investigated the effects of E on SMC number, DNA and collagen synthesis, and migration in the presence and absence of MPA. The inhibitory effects of E on cell number, DNA synthesis, collagen synthesis, and SMC migration were significantly abrogated by MPA. For example, E (0.1micromol/L) reduced cell number to 51+/-3.6% of control, and this inhibitory effect was attenuated to 87.5+/-2.9% by MPA (10 nmol/L). Treatment with MPA alone did not alter any SMC parameters, and the abrogatory effects of MPA were not blocked by RU486 (progesterone-receptor antagonist), nor did treatment of SMCs with MPA influence the expression of estrogen receptor-alpha or estrogen receptor-beta. In SMCs and microsomal preparations, MPA inhibited the sequential conversion of E to 2-2/4-hydroxyestradiol and 2-ME. Moreover, as compared with microsomes treated with E alone, 2-ME formation was inhibited when SMCs were incubated with microsomal extracts incubated with E plus MPA. Our findings suggest that the inhibitory actions of MPA on the metabolism of E to 2/4-hydroxyestradiols and MEs may negate the cardiovascular protective actions of estradiol in postmenopausal women receiving estradiol therapy combined with administration of MPA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Prospective evaluation of tracheo-carinal airway reconstructions using pedicled extrathoracic muscle flaps for closing airway defects after non-circumferential resections and after carinal resections as part of the reconstruction for alleviation of anastomotic tension. METHODS: From January 1996 to June 2006, 41 patients underwent tracheo-carinal airway reconstructions using 45 extrathoracic muscle flaps (latissimus dorsi, n=25; serratus anterior, n=18; pectoralis major, n=2) for closing airway defects resulting from (a) bronchopleural fistulas (BPF) with short desmoplastic bronchial stumps after right upper lobectomy (n=1) and right-sided (pleuro) pneumonectomy (n=13); (b) right (n=9) and left (n=3) associated with partial carinal resections for pre-treated centrally localised tumours; (c) partial non-circumferential tracheal resections for pre-treated tracheal tumours, tracheo-oesophageal fistulas (TEF) and chronic tracheal injury with tracheomalacia (n=11); (d) carinal resections with the integration of a muscle patch in specific parts of the anastomotic reconstruction for alleviation of anastomotic tension (n=4). The airway defects ranged from 2 x 1 cm to 8 x 4 cm and involved up to 50% of the airway circumference. The patients were followed by clinical examination, repeated bronchoscopy, pulmonary function testing and CT scans. The minimum follow-up time was 6 months. RESULTS: Ninety-day mortality was 7.3% (3/41 patients). Four patients (9.7%) sustained muscle flap necrosis requiring re-operation and flap replacement without subsequent mortality, airway dehiscence or stenosis. Airway dehiscence was observed in 1/41 patients (2.4%) and airway stenosis in 1/38 surviving patients (2.6%) responding well to topical mitomycin application. Follow-up on clinical grounds, by CT scans and repeated bronchoscopy, revealed airtight, stable and epithelialised airways and no recurrence of BPF or TEF in all surviving patients. CONCLUSIONS: Tracheo-carinal airway defects can be closed by use of pedicled extrathoracic muscle flaps after non-circumferential resections and after carinal resections with the muscle patch as part of the reconstruction for alleviation of anastomotic tension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between pressure induced changes on individual proteins and selected quality parameters in bovine longissimus thoracis et lumborum (LTL) muscle was studied. Pressures ranging from 200 to 600 MPa at 20 °C were used. High pressure processing (HPP) at pressures above 200 MPa induced strong modifications of protein solubility, meat colour and water holding capacity (WHC). The protein profiles of non-treated and pressure treated meat were observed using two dimensional electrophoresis. Proteins showing significant differences in abundance among treatments were identified by mass spectrometry. Pressure levels above 200 MPa strongly modified bovine LTL proteome with main effects being insolubilisation of sarcoplasmic proteins and solubilisation of myofibrillar proteins. Sarcoplasmic proteins were more susceptible to HPP effects than myofibrillar. Individual protein changes were significantly correlated with protein solubility, L*, b* and WHC, providing further insights into the mechanistic processes underlying HPP influence on quality and providing the basis for the future development of protein markers to assess the quality of processed meats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we identify a role for the matrilin-2 (Matn2) extracellular matrix protein in controlling the early stages of myogenic differentiation. We observed Matn2 deposition around proliferating, differentiating and fusing myoblasts in culture and during muscle regeneration in vivo. Silencing of Matn2 delayed the expression of the Cdk inhibitor p21 and of the myogenic genes Nfix, MyoD and Myog, explaining the retarded cell cycle exit and myoblast differentiation. Rescue of Matn2 expression restored differentiation and the expression of p21 and of the myogenic genes. TGF-β1 inhibited myogenic differentiation at least in part by repressing Matn2 expression, which inhibited the onset of a positive-feedback loop whereby Matn2 and Nfix activate the expression of one another and activate myoblast differentiation. In vivo, myoblast cell cycle arrest and muscle regeneration was delayed in Matn2(-/-) relative to wild-type mice. The expression levels of Trf3 and myogenic genes were robustly reduced in Matn2(-/-) fetal limbs and in differentiating primary myoblast cultures, establishing Matn2 as a key modulator of the regulatory cascade that initiates terminal myogenic differentiation. Our data thus identify Matn2 as a crucial component of a genetic switch that modulates the onset of tissue repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: The study examined the effects of an oral acute administration of the beta2-agonist salbutamol (Sal) (6 mg) vs. placebo on muscle strength and fatigability in 12 non-asthmatic recreational male athletes in a randomized double-blind protocol. METHODS: Contractile properties of the right quadriceps muscle were measured during electrical stimulations, i.e. twitch, 1-s pulse trains at 20 (P(20) ) and 80 Hz (P(80) ) and during maximal voluntary isometric contraction (MVIC) before (PRE) and after (POST) a fatigue-producing protocol set by an electromyostimulation (30 contractions, frequency: 75 Hz, on-off ratio: 6.25-20s). In addition, the level of muscle voluntary activation was measured. RESULTS: In PRE and POST conditions, the peak torque (PT) of twitch, P(80) and MVIC were not modified by the treatment. The PT in POST P(20) was slightly, although not significantly, less affected by fatigue in Sal compared with placebo condition. Moreover, twitch half-relaxation time at PRE was smaller under Sal than under placebo (P < 0.05). No significant changes in the degree of voluntary activation were observed with Sal treatment in PRE or POST condition. CONCLUSION: Although these findings did not exclude completely an effect of Sal on peripheral factors of human skeletal muscle, oral acute administration of the beta2-agonist Sal seems to be without any relevant ergogenic effect on muscle contractility and fatigability in non-asthmatic recreational male athletes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was the identification of new metabolites and transformation products (TPs) in chicken muscle from Enrofloxacin (ENR), Ciprofloxacin (CIP), Difloxacin (DIF) and Sarafloxacin (SAR), which are antibiotics that belong to the fluoroquinolones family. The stability of ENR, CIP, DIF and SAR standard solutions versus pH degradation process (from pH 1.5 to 8.0, simulating the pH since the drug is administered until its excretion) and freeze-thawing (F/T) cycles was tested. In addition, chicken muscle samples from medicated animals with ENR were analyzed in order to identify new metabolites and TPs. The identification of the different metabolites and TPs was accomplished by comparison of mass spectral data from samples and blanks, using liquid chromatography coupled to quadrupole time-of-flight (LC-QqToF) and Multiple Mass Defect Filter (MMDF) technique as a pre-filter to remove most of the background noise and endogenous components. Confirmation and structure elucidation was performed by liquid chromatography coupled to linear ion trap quadrupole Orbitrap (LC-LTQ-Orbitrap), due to its mass accuracy and MS/MS capacity for elemental composition determination. As a result, 21 TPs from ENR, 6 TPs from CIP, 14 TPs from DIF and 12 TPs from SAR were identified due to the pH shock and F/T cycles. On the other hand, 14 metabolites were identified from the medicated chicken muscle samples. Formation of CIP and SAR, from ENR and DIF, respectively, and the formation of desethylene-quinolone were the most remarkable identified compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: In this study we evaluated the validity of garment-based quadriceps stimulation (GQS) for assessment of muscle inactivation in comparison with femoral nerve stimulation (FNS). METHODS: Inactivation estimates (superimposed doublet torque), self-reported discomfort, and twitch and doublet contractile properties were compared between GQS and FNS in 15 healthy subjects. RESULTS: Superimposed doublet torque was significantly lower for GQS than for FNS at 20% and 40% maximum voluntary contraction (MVC) (P < 0.01), but not at 60%, 80%, and 100% MVC. Discomfort scores were systematically lower for GQS than for FNS (P < 0.05). Resting twitch and doublet peak torque were lower for GQS, and time to peak torque was shorter for GQS than for FNS (P < 0.01). CONCLUSIONS: GQS can be used with confidence for straightforward evaluation of quadriceps muscle inactivation, whereas its validity for assessment of contractile properties remains to be determined. Muscle Nerve 51: 117-124, 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract :The contraction of the heart or skeletal muscles is mainly due to the propagation, through excitable cells, of an electrical influx called action potential (AP). The AP results from the sequential opening of ion channels that generate inward or outward currents through the cell membrane. Among all the channels involved, the voltage-gated sodium channel is responsible for the rising phase of the action potential. Ten genes encode the different isoforms of these channels (from Nav1.1 to Nav1.9 and an atypical channel named NavX). Nav1.4 and Nav1.5 are the main skeletal muscle and cardiac sodium channels respectively. Their importance for muscle and heart function has been highlighted by the description of mutations in their encoding genes SCN4A and SCNSA. They lead respectively to neuromuscular disorders such as myotonia or paralysis (for Nav1.4), and to cardiac arrhythmias that can deteriorate into sudden cardiac death (for Nav1.5).The general aim of my PhD work has been to study diseases linked with channels dysfunction, also called channelopathies. In that purpose, I investigated the function and the regulation of the muscle and cardiac voltage-gated sodium channels. During the two first studies, I characterized the effects of two mutations affecting Nav1.4 and Nav1.5 function. I used the HEK293 model cells to express wild-type or mutant channels and then studied their biophysical properties with the patch-clamp technique, in whole cell configuration. We found that the SCN4A mutation produced complex alterations of the muscle sodium channel function, that could explain the myotonic phenotype described in patients carrying the mutation. In the second study, the index case was an heterozygous carrier of a SCNSA mutation that leads to a "loss of function" of the channel. The decreased sodium current measured with mutated Nay 1.5 channels, at physiological temperature, was a one of the factors that could explain the observed Brugada syndrome. The last project aimed at identifying a new potential protein interacting with the cardiac sodium channel. We found that the protein SAP97 binds the three last amino-acids of the C-terminus of Na,, 1.5. Our results also indicated that silencing the expression of SAP97 in HEK293 cells decreased the sodium current. Sodium channels lacking their three last residues also produced a reduced INa. These preliminary results suggest that SAP97 is implicated in the regulation of sodium channel. Whether this effect is direct or imply the action of an adaptor protein remains to be investigated. Moreover, our group has previously shown that Nav1.5 channels are localized to lateral membranes of cardiomyocytes by the dystrophin multiprotein complex (DMC). This suggests that sodium channels are distributed in, at least, two different pools: one targeted at lateral membranes by DMC and the other at intercalated discs by another protein such as SAP97.These studies reveal that cardiac and muscle diseases may result from ion channel mutations but also from regulatory proteins affecting their regulation.Résumé :La contraction des muscles et du coeur est principalement due à la propagation, à travers les cellules excitables, d'un stimulus électrique appelé potentiel d'action (PA). C'est l'ouverture séquentielle de plusieurs canaux ioniques transmembranaires, permettant l'entrée ou la sortie d'ions dans la cellule, qui est à l'origine de ce PA. Parmi tous les canaux ioniques impliqués dans ce processus, les canaux sodiques dépendant du voltage sont responsables de la première phase du potentiel d'action. Les différentes isoformes de ces canaux (de Nav1.1 à Nav1.9 et NavX) sont codées par dix gènes distincts. Nav1.4 et Nav1.5 sont les principaux variants exprimés respectivement dans le muscle et le coeur. Plusieurs mutations ont été décrites dans les gènes qui codent pour ces deux canaux: SCN4A (pour Nav1.4) et SCNSA (pour Nav1.5). Elles sont impliquées dans des pathologies neuromusculaires telles que des paralysies ou myotonies (SCN4A) ou des arythmies cardiaques pouvant conduire à la mort subite cardiaque (SCNSA).Mon travail de thèse a consisté à étudier les maladies liées aux dysfonctionnements de ces canaux, aussi appelées canalopathies. J'ai ainsi analysé la fonction et la régulation des canaux sodiques dépendant du voltage dans le muscle squelettique et le coeur. A travers les deux premières études, j'ai ainsi pu examiner les conséquences de deux mutations affectant respectivement les canaux Nav1.4 et Nav1.5. Les canaux sauvages ou mutants ont été exprimés dans des cellules HEK293 afin de caractériser leurs propriétés biophysiques par la technique du patch clamp en configuration cellule entière. Nous avons pu déterminer que la mutation trouvée dans le gène SCN4A engendrait des modifications importantes de la fonction du canal musculaire. Ces altérations fournissent des indications nous permettant d'expliquer certains aspects de la myotonie observée chez les membres de la famille étudiée. Le patient présenté dans la deuxième étude était hétérozygote pour la mutation identifiée dans le gène SCNSA. La perte de fonction des canaux Nav1.5 ainsi engendrée, a été observée lors d'analyses à températures physiologiques. Elle représente l'un des éléments pouvant potentiellement expliquer le syndrome de Brugada du patient. La dernière étude a consisté à identifier une nouvelle protéine impliquée dans la régulation du canal sodique cardiaque. Nos expériences ont démontré que les trois derniers acides aminés de la partie C-terminale de Nav1.5 pouvaient interagir avec la protéine SAP97. Lorsque que l'expression de la SAP97 est réduite dans les cellules HEK293, cela induit une baisse importante du courant sodique. De même, les canaux tronqués de leurs trois derniers acides aminés génèrent un flux ionique réduit. Ces résultats préliminaires suggèrent que SAP97 est peut-être impliquée dans la régulation du canal Na,,1.5. Des expériences complémentaires permettront de déterminer si ces deux protéines interagissent directement ou si une protéine adaptatrice est nécessaire. De plus, nous avons préalablement montré que les canaux Nav1.5 étaient localisés au niveau de la membrane latérale des cardiomyocytes par le complexe multiprotéique de la dystrophine (DMC). Ceci suggère que les canaux sodiques peuvent être distribués dans un minimum de deux pools, l'un ciblé aux membranes latérales pax le DMC et l'autre dirigé vers les disques intercalaires par des protéines telles que SAP97.L'ensemble de ces études met en évidence que certaines maladies musculaires et cardiaques peuvent être la conséquence directe de mutations de canaux ioniques, mais que l'action de protéines auxiliaires peut aussi affecter leur fonction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erythropoietin (rHuEPO) has proven to be effective in the treatment of anemia of chronic renal failure (CRF). Despite improving the quality of life, peak oxygen uptake after rHuEPO therapy is not improved as much as the increase in hemoglobin concentration ([Hb)] would predict. We hypothesized that this discrepancy is due to failure of O2 transport rates to rise in a manner proportional to [Hb]. To test this, eight patients with CRF undergoing regular hemodialysis were studied pre- and post-rHuEPO ([Hb] = 7.5 +/- 1.0 vs. 12.5 +/- 1.0 g x dl-1) using a standard incremental cycle exercise protocol. A group of 12 healthy sedentary subjects of similar age and anthropometric characteristics served as controls. Arterial and femoral venous blood gas data were obtained and coupled with simultaneous measurements of femoral venous blood flow (Qleg) by thermodilution to obtain O2 delivery and oxygen uptake (VO2). Despite a 68% increase in [Hb], peak VO2 increased by only 33%. This could be explained largely by reduced peak leg blood flow, limiting the gain in O2 delivery to 37%. At peak VO2, after rHuEPO, O2 supply limitation of maximal VO2 was found to occur, permitting the calculation of a value for muscle O2 conductance from capillary to mitochondria (DO2). While DO2 was slightly improved after rHuEPO, it was only 67% of that of sedentary control subjects. This kept maximal oxygen extraction at only 70%. Two important conclusions can be reached from this study. First, the increase in [Hb] produced by rHuEPO is accompanied by a significant reduction in peak blood flow to exercising muscle, which limits the gain in oxygen transport. Second, even after restoration of [Hb], O2 conductance from the muscle capillary to the mitochondria remains considerably below normal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was the identification of new metabolites and transformation products (TPs) in chicken muscle from Enrofloxacin (ENR), Ciprofloxacin (CIP), Difloxacin (DIF) and Sarafloxacin (SAR), which are antibiotics that belong to the fluoroquinolones family. The stability of ENR, CIP, DIF and SAR standard solutions versus pH degradation process (from pH 1.5 to 8.0, simulating the pH since the drug is administered until its excretion) and freeze-thawing (F/T) cycles was tested. In addition, chicken muscle samples from medicated animals with ENR were analyzed in order to identify new metabolites and TPs. The identification of the different metabolites and TPs was accomplished by comparison of mass spectral data from samples and blanks, using liquid chromatography coupled to quadrupole time-of-flight (LC-QqToF) and Multiple Mass Defect Filter (MMDF) technique as a pre-filter to remove most of the background noise and endogenous components. Confirmation and structure elucidation was performed by liquid chromatography coupled to linear ion trap quadrupole Orbitrap (LC-LTQ-Orbitrap), due to its mass accuracy and MS/MS capacity for elemental composition determination. As a result, 21 TPs from ENR, 6 TPs from CIP, 14 TPs from DIF and 12 TPs from SAR were identified due to the pH shock and F/T cycles. On the other hand, 14 metabolites were identified from the medicated chicken muscle samples. Formation of CIP and SAR, from ENR and DIF, respectively, and the formation of desethylene-quinolone were the most remarkable identified compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular calcification is a hallmark of advanced atherosclerosis. Here we show that deletion of the nuclear receptor PPARγ in vascular smooth muscle cells of low density lipoprotein receptor (LDLr)-deficient mice fed an atherogenic diet high in cholesterol, accelerates vascular calcification with chondrogenic metaplasia within the lesions. Vascular calcification in the absence of PPARγ requires expression of the transmembrane receptor LDLr-related protein-1 in vascular smooth muscle cells. LDLr-related protein-1 promotes a previously unknown Wnt5a-dependent prochondrogenic pathway. We show that PPARγ protects against vascular calcification by inducing the expression of secreted frizzled-related protein-2, which functions as a Wnt5a antagonist. Targeting this signalling pathway may have clinical implications in the context of common complications of atherosclerosis, including coronary artery calcification and valvular sclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The Advisa MRI system is designed to safely undergo magnetic resonance imaging (MRI). Its influence on image quality is not well known. OBJECTIVE: To evaluate cardiac magnetic resonance (CMR) image quality and to characterize myocardial contraction patterns by using the Advisa MRI system. METHODS: In this international trial with 35 participating centers, an Advisa MRI system was implanted in 263 patients. Of those, 177 were randomized to the MRI group and 150 underwent MRI scans at the 9-12-week visit. Left ventricular (LV) and right ventricular (RV) cine long-axis steady-state free precession MR images were graded for quality. Signal loss along the implantable pulse generator and leads was measured. The tagging CMR data quality was assessed as the percentage of trackable tagging points on complementary spatial modulation of magnetization acquisitions (n=16) and segmental circumferential fiber shortening was quantified. RESULTS: Of all cine long-axis steady-state free precession acquisitions, 95% of LV and 98% of RV acquisitions were of diagnostic quality, with 84% and 93%, respectively, being of good or excellent quality. Tagging points were trackable from systole into early diastole (360-648 ms after the R-wave) in all segments. During RV pacing, tagging demonstrated a dyssynchronous contraction pattern, which was not observed in nonpaced (n = 4) and right atrial-paced (n = 8) patients. CONCLUSIONS: In the Advisa MRI study, high-quality CMR images for the assessment of cardiac anatomy and function were obtained in most patients with an implantable pacing system. In addition, this study demonstrated the feasibility of acquiring tagging data to study the LV function during pacing.