973 resultados para MOLECULAR PATHWAYS
Resumo:
Humans display structural and functional asymmetries in brain organization, strikingly with respect to language and handedness. The molecular basis of these asymmetries is unknown. We report a genome-wide association study meta-analysis for a quantitative measure of relative hand skill in individuals with dyslexia [reading disability (RD)] (n = 728). The most strongly associated variant, rs7182874 (P = 8.68×10-9), is located in PCSK6, further supporting an association we previously reported. We also confirmed the specificity of this association in individuals with RD; the same locus was not associated with relative hand skill in a general population cohort (n = 2,666). As PCSK6 is known to regulate NODAL in the development of left/right (LR) asymmetry in mice, we developed a novel approach to GWAS pathway analysis, using gene-set enrichment to test for an over-representation of highly associated variants within the orthologs of genes whose disruption in mice yields LR asymmetry phenotypes. Four out of 15 LR asymmetry phenotypes showed an over-representation (FDR≤5%). We replicated three of these phenotypes; situs inversus, heterotaxia, and double outlet right ventricle, in the general population cohort (FDR≤5%). Our findings lead us to propose that handedness is a polygenic trait controlled in part by the molecular mechanisms that establish LR body asymmetry early in development. © 2013 Brandler et al.
Resumo:
The amyloid cascade hypothesis places amyloid-β at the origin of Alzheimer's disease (AD). Amyloid-β (Aβ) is the product of the sequential cleavage of the amyloid precursor protein (APP) by the enzymes β- and γ-secretases. An inflammatory component to AD has been suggested in association with CD40 (a member of the tumor necrosis factor receptor superfamily (TNFRS) and its cognate ligand CD40L. In this study, I hypothesized that the neutralization of pro-inflammatory cytokines produced downstream of CD40/CD40L interaction would reduce APP processing. I also hypothesized that blocking the binding of different adaptor proteins to CD40 by mutating its cytoplasmic tail would result in significant reduction of the APP metabolites: Aβ, sAPPβ, sAPPα, CTFβ and CTFα. ^ Treatment with CD40L of human embryonic kidney cells over-expressing both APP and CD40 (HEK/APPsw/CD40) significantly increased levels of the cytokine granulocyte macrophage colony stimulating factor (GM-CSF). Neutralizing antibodies against GM-CSF mitigated the CD40L-induced production of Aβ in these cells. Treatment of the HEK/APPsw/CD40 cells with recombinant GM-CSF significantly increased Aβ levels. GM-CSF receptor gene silencing with shRNA significantly reduced Aβ levels to below base line in non-stimulated HEK/APPsw/CD40 cells. Silencing of the GM-CSF receptor also decreased APP endocytosis (therefore reducing the availability of APP to be cleaved in the endosomes). ^ Using CD40 mutants, I show that CD40L can increase levels of Aβ(1-40), Aβ(1-42), sAPPβ, sAPPα and CTFβ independently of TRAF signaling. TRAFs had been shown to be necessary for most CD40/CD40L-dependent signaling. An increase in mature/immature APP ratio after CD40L treatment of CD40wt and CD40-mutant cells was observed, reflecting alterations in APP trafficking. CD4OL treatment of a neuroblastoma cell line over-expressing CTFβ suggested that CD40L affected γ-secretase activity. Inhibition of γ-secretase activity significantly reduced sAPPβ levels in the CD40L treated HEK/APPsw CD40wt and the CD40-mutant cells. The latter suggests CD40/CD40L interaction primarily acts on γ-secretase and affects β-secretase via a positive feedback mechanism. ^ Taken together, the results of this dissertation suggest that GM-CSF operates downstream of CD40/CD40L interaction and that GM-CSF modulates Aβ production by influencing APP trafficking. Moreover, the data presented suggest that CD40/CD40L interaction can modulate APP processing via a mechanism independent of TRAF signaling. ^
Resumo:
The emergence of tamoxifen or aromatase inhibitor resistance is a major problem in the treatment of breast cancer. The molecular signaling mechanism of antiestrogen resistance is not clear. Understanding the mechanisms by which resistance to these agents arise could have major clinical implications for preventing or circumventing it. Therefore, in this dissertation we have investigated the molecular mechanisms underlying antiestrogen resistance by studying the contributions of reactive oxygen species (ROS)-induced redox signaling pathways in antiestrogen resistant breast cancer cells. Our hypothesis is that the conversion of breast tumors to a tamoxifen-resistant phenotype is associated with a progressive shift towards a pro-oxidant environment of cells as a result of oxidative stress. The hypothesis of this dissertation was tested in an in vitro 2-D cell culture model employing state of the art biochemical and molecular techniques, including gene overexpression, immunoprecipitation, Western blotting, confocal imaging, ChIP, Real-Time RT-PCR, and anchorage-independent cell growth assays. We observed that tamoxifen (TAM) acts like both an oxidant and an antioxidant. Exposure of tamoxifen resistant LCC2 cell to TAM or 17 beta-estradiol (E2) induced the formation of reactive oxidant species (ROS). The formation of E2-induced ROS was inhibited by co-treatment with TAM, similar to cells pretreated with antioxidants. In LCC2 cells, treatments with either E2 or TAM were capable of inducing cell proliferation which was then inhibited by biological and chemical antioxidants. Exposure of LCC2 cells to tamoxifen resulted in a decrease in p27 expression. The LCC2 cells exposed to TAM showed an increase in p27 phosphorylation on T157 and T187. Conversely, antioxidant treatment showed an increase in p27 expression and a decrease in p27 phosphorylation on T157 and T187 in TAM exposed cells which were similar to the effects of Fulvestrant. In line with previous studies, we showed an increase in the binding of cyclin E-Cdk2 and in the level of p27 in TAM exposed cells that overexpressed biological antioxidants. Together these findings highly suggest that lowering the oxidant state of antiestrogen resistant LCC2 cells, increases LCC2 susceptibility to tamoxifen via the cyclin dependent kinase inhibitor p27.
Resumo:
Fluorescent proteins (FPs) are extremely valuable biochemical markers which have found a wide range of applications in cellular and molecular biology research. The monomeric variants of red fluorescent proteins (RFPs), known as mFruits, have been especially valuable for in vivo applications in mammalian cell imaging. Fluorescent proteins consist of a chromophore caged in the beta-barrel protein scaffold. The photophysical properties of an FP is determined by its chromophore structure and its interactions with the protein barrel. Application of hydrostatic pressure on FPs results in the modification of the chromophore environment which allows a systematic study of the role of the protein-chromophore interactions on photophysical properties of FPs. Using Molecular Dynamics (MD) computer simulations, I investigated the pressure induced structural changes in the monomeric variants mCherry, mStrawberry, and Citrine. The results explain the molecular basis for experimentally observed pressure responses among FP variants. It is found that the barrel flexibility, hydrogen bonding interactions and chromophore planarity of the FPs can be correlated to their contrasting photophysical properties at vaious pressures. I also investigated the oxygen diffusion pathways in mOrange and mOrange2 which exhibit marked differences in oxygen sensitivities as well as photostability. Such computational identifications of structural changes and oxygen diffusion pathways are important in guiding mutagenesis efforts to design fluorescent proteins with improved photophysical properties.
Resumo:
Fluorescent proteins are valuable tools as biochemical markers for studying cellular processes. Red fluorescent proteins (RFPs) are highly desirable for in vivo applications because they absorb and emit light in the red region of the spectrum where cellular autofluorescence is low. The naturally occurring fluorescent proteins with emission peaks in this region of the spectrum occur in dimeric or tetrameric forms. The development of mutant monomeric variants of RFPs has resulted in several novel FPs known as mFruits. Though oxygen is required for maturation of the chromophore, it is known that photobleaching of FPs is oxygen sensitive, and oxygen-free conditions result in improved photostabilities. Therefore, understanding oxygen diffusion pathways in FPs is important for both photostabilites and maturation of the chromophores. We used molecular dynamics calculations to investigate the protein barrel fluctuations in mCherry, which is one of the most useful monomeric mFruit variants, and its GFP homolog citrine. We employed implicit ligand sampling and locally enhanced sampling to determine oxygen pathways from the bulk solvent into the mCherry chromophore in the interior of the protein. The pathway contains several oxygen hosting pockets, which were identified by the amino acid residues that form the pocket. We calculated the free-energy of an oxygen molecule at points along the path. We also investigated an RFP variant known to be significantly less photostable than mCherry and find much easier oxygen access in this variant. We showed that oxygen pathways can be blocked or altered, and barrel fluctuations can be reduced by strategic amino acid substitutions. The results provide a better understanding of the mechanism of molecular oxygen access into the fully folded mCherry protein barrel and provide insight into the photobleaching process in these proteins.
Resumo:
Cryptococcus neoformans is an opportunistic fungal pathogen that causes significant disease worldwide. Even though this fungus has not evolved specifically to cause human disease, it has a remarkable ability to adapt to many different environments within its infected host. C. neoformans adapts by utilizing conserved eukaryotic and fungal-specific signaling pathways to sense and respond to stresses within the host. Upon infection, two of the most significant environmental changes this organism experiences are elevated temperature and high pH.
Conserved Rho and Ras family GTPases are central regulators of thermotolerance in C. neoformans. Many GTPases require prenylation to associate with cellular membranes and function properly. Using molecular genetic techniques, microscopy, and infection models, I demonstrated that the prenyltransferase, geranylgeranyl transferase I (GGTase I) is required for thermotolerance and pathogenesis. Using fluorescence microscopy, I found that only a subset of conserved GGTase I substrates requires this enzyme for membrane localization. Therefore, the C. neoformans GGTase I may recognize its substrate in a slightly different manner than other eukaryotic organisms.
The alkaline response transcription factor, Rim101, is a central regulator of stress-response genes important for adapting to the host environment. In particular, Rim101 regulates cell surface alterations involved in immune avoidance. In other fungi, Rim101 is activated by alkaline pH through a conserved signaling pathway, but this pathway had yet been characterized in C. neoformans. Using molecular genetic techniques, I identified and analyzed the conserved members of the Rim pathway. I found that it was only partially conserved in C. neoformans, missing the components that sense pH and initiate pathway activation. Using a genetic screen, I identified a novel Rim pathway component named Rra1. Structural prediction and genetic epistasis experiments suggest that Rra1 may serve as the Rim pathway pH sensor in C. neoformans and other related basidiomycete fungi.
To explore the relevance of Rim pathway signaling in the interaction of C neoformans with its host, I characterized the Rim101-regulated cell wall changes that prevent immune detection. Using HPLC, enzymatic degradation, and cell wall stains, I found that the rim101Δ mutation resulted in increased cell wall chitin exposure. In vitro co-culture assays demonstrated that increased chitin exposure is associated with enhanced activation of macrophages and dendritic cells. To further test this association, I demonstrated that other mutant strains with increased chitin exposure induce macrophage and dendritic cell responses similar to rim101Δ. We used primary macrophages from mutant mouse lines to demonstrate that members of both the Toll-like receptor and C-type lectin receptor families are involved in detecting strains with increased chitin exposure. Finally, in vivo immunological experiments demonstrated that the rim101Δ strain induced a global inflammatory immune response in infected mouse lungs, expanding upon our previous in vivo rim101Δ studies. These results demonstrate that cell wall organization largely determines how fungal cells are detected by the immune system.
Resumo:
CD4+ T cells play a crucial in the adaptive immune system. They function as the central hub to orchestrate the rest of immunity: CD4+ T cells are essential governing machinery in antibacterial and antiviral responses by facilitating B cell affinity maturation and coordinating the innate and adaptive immune systems to boost the overall immune outcome; on the contrary, hyperactivation of the inflammatory lineages of CD4+ T cells, as well as the impairments of suppressive CD4+ regulatory T cells, are the etiology of various autoimmunity and inflammatory diseases. The broad role of CD4+ T cells in both physiological and pathological contexts prompted me to explore the modulation of CD4+ T cells on the molecular level.
microRNAs (miRNAs) are small RNA molecules capable of regulating gene expression post-transcriptionally. miRNAs have been shown to exert substantial regulatory effects on CD4+ T cell activation, differentiation and helper function. Specifically, my lab has previously established the function of the miR-17-92 cluster in Th1 differentiation and anti-tumor responses. Here, I further analyzed the role of this miRNA cluster in Th17 differentiation, specifically, in the context of autoimmune diseases. Using both gain- and loss-of-function approaches, I demonstrated that miRNAs in miR-17-92, specifically, miR-17 and miR-19b in this cluster, is a crucial promoter of Th17 differentiation. Consequently, loss of miR-17-92 expression in T cells mitigated the progression of experimental autoimmune encephalomyelitis and T cell-induced colitis. In combination with my previous data, the molecular dissection of this cluster establishes that miR-19b and miR-17 play a comprehensive role in promoting multiple aspects of inflammatory T cell responses, which underscore them as potential targets for oligonucleotide-based therapy in treating autoimmune diseases.
To systematically study miRNA regulation in effector CD4+ T cells, I devised a large-scale miRNAome profiling to track in vivo miRNA changes in antigen-specific CD4+ T cells activated by Listeria challenge. From this screening, I identified that miR-23a expression tightly correlates with CD4+ effector expansion. Ectopic expression and genetic deletion strategies validated that miR-23a was required for antigen-stimulated effector CD4+ T cell survival in vitro and in vivo. I further determined that miR-23a targets Ppif, a gatekeeper of mitochondrial reactive oxygen species (ROS) release that protects CD4+ T cells from necrosis. Necrosis is a type of cell death that provokes inflammation, and it is prominently triggered by ROS release and its consequent oxidative stress. My finding that miR-23a curbs ROS-mediated necrosis highlights the essential role of this miRNA in maintaining immune homeostasis.
A key feature of miRNAs is their ability to modulate different biological aspects in different cell populations. Previously, my lab found that miR-23a potently suppresses CD8+ T cell cytotoxicity by restricting BLIMP1 expression. Since BLIMP1 has been found to inhibit T follicular helper (Tfh) differentiation by antagonizing the master transcription factor BCL6, I investigated whether miR-23a is also involved in Tfh differentiation. However, I found that miR-23a does not target BLIMP1 in CD4+ T cells and loss of miR-23a even fostered Tfh differentiation. This data indicate that miR-23a may target other pathways in CD4+ T cells regarding the Tfh differentiation pathway.
Although the lineage identity and regulatory networks for Tfh cells have been defined, the differentiation path of Tfh cells remains elusive. Two models have been proposed to explain the differentiation process of Tfh cells: in the parallel differentiation model, the Tfh lineage is segregated from other effector lineages at the early stage of antigen activation; alternatively, the sequential differentiation model suggests that naïve CD4+ T cells first differentiate into various effector lineages, then further program into Tfh cells. To address this question, I developed a novel in vitro co-culture system that employed antigen-specific CD4+ T cells, naïve B cells presenting cognate T cell antigen and BAFF-producing feeder cells to mimic germinal center. Using this system, I were able to robustly generate GC-like B cells. Notably, well-differentiated Th1 or Th2 effector cells also quickly acquired Tfh phenotype and function during in vitro co-culture, which suggested a sequential differentiation path for Tfh cells. To examine this path in vivo, under conditions of classical Th1- or Th2-type immunizations, I employed a TCRβ repertoire sequencing technique to track the clonotype origin of Tfh cells. Under both Th1- and Th2- immunization conditions, I observed profound repertoire overlaps between the Teff and Tfh populations, which strongly supports the proposed sequential differentiation model. Therefore, my studies establish a new platform to conveniently study Tfh-GC B cell interactions and provide insights into Tfh differentiation processes.
Resumo:
Escherichia coli (E.coli) is a diverse bacterial species that primarily forms a beneficial symbiotic relationship with the host in the human lower gastrointestinal track (GIT), however it can also be pathogenic in this environment. Furthermore, some strains can diverge from the GIT and occupy niches such as the urinary tract. In all these environments, E. coli interacts with the immune system and macrophages represent the front line of the innate immune system. In this study we characterise the immune response by macrophages to E. coli infection. It was shown that E. coli broadly provoke a similar cytokine response during macrophages infection and furthermore are degraded primarily by the phagocytosis pathway. Recently a new group of E. coli called Adherent Invasive Escherichia coli (AIEC) has been described. AIEC are present in the guts of Crohn’s disease (CD) patients at a higher frequency than in healthy patients. AIEC can replicate in macrophages but the mechanism for this is not fully understood. The processing of AIEC by macrophages was investigated and it was shown that AIEC only replicated in permissive macrophages. Furthermore, even in a permissive macrophages AIEC are trafficked through macrophages in a similar manner to commensal E. coli. This supports the hypothesis that AIEC are highly similar to commensal E. coli and only cause pathogenicity when present in the permissive environment of the gut of CD patients. Replication in macrophages requires functioning metabolic pathways and it was identified that glycolysis is important for AIEC survival in macrophages. AIEC mutants without a fully functioning glycolysis pathway induced less IL-1β cytokine release from macrophages than wild type strain suggesting that metabolism plays a role in inflammasome activation. Furthermore, AIEC mutants that could not produce the glycolytic end product acetate induced significantly reduced IL-1β release during infection. This suggest that the acetate molecule or a phenotypic effect of its production may be a driver of IL-1β release from AIEC infected macrophages. The interaction of uropathogenic E. coli (UPEC) with macrophages was also investigated. UPEC induced very high levels of cytotoxicity in human macrophages which was shown to be dependent on the production of the pore forming toxin α-hemolysin. However, UPEC did not induced high levels of cytotoxicity in murine macrophages suggesting there are species specific sensitivity to α-hemolysin that should be considered when studying UPEC pathogenicity in murine models.
Resumo:
Attaching and effacing (A/E) lesions and actin polymerization, the hallmark of enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and Citrobacter rodentium (CR) infections, are dependent on the effector Tir. Phosphorylation of Tir(EPEC/CR) Y474/1 leads to recruitment of Nck and neural Wiskott-Aldrich syndrome protein (N-WASP) and strong actin polymerization in cultured cells. Tir(EPEC/CR) also contains an Asn-Pro-Tyr (NPY(454/1)) motif, which triggers weak actin polymerization. In EHEC the NPY(458) actin polymerization pathway is amplified by TccP/EspF(U), which is recruited to Tir via IRSp53 and/or insulin receptor tyrosine kinase substrate (IRTKS). Here we used C. rodentium to investigate the different Tir signalling pathways in vivo. Following infection with wild-type C. rodentium IRTKS, but not IRSp53, was recruited to the bacterial attachment sites. Similar results were seen after infection of human ileal explants with EHEC. Mutating Y471 or Y451 in Tir(CR) abolished recruitment of Nck and IRTKS respectively, but did not affect recruitment of N-WASP or A/E lesion formation. This suggests that despite their crucial role in actin polymerization in cultured cells the Tir:Nck and Tir:IRTKS pathways are not essential for N-WASP recruitment or A/E lesion formation in vivo. Importantly, wild-type C. rodentium out-competed the tir tyrosine mutants during mixed infections. These results uncouple the Tir:Nck and Tir:IRTKS pathways from A/E lesion formation in vivo but assign them an important in vivo role.
Resumo:
Background: Vasodilator-Stimulated Phosphoprotein (VASP) is involved in the inhibition of agonist-induced platelet aggregation by cyclic nucleotides and the adhesion of platelets to the vascular wall. αIIbβ3 is the main integrin responsible for platelet activation and Rap1b plays a key role in integrin signalling. We investigated whether VASP is involved in the regulation of Rap1b in platelets since VASP-null platelets exhibit augmented adhesion to endothelial cells in vivo.
Methods: Washed platelets from wild type and VASP-deficient mice were stimulated with thrombin, the purinergic receptors agonist ADP, or the thromboxane A2 receptor agonist U46619 and Rap1b activation was measured using the GST-RalGDS-RBD binding assay. Interaction of VASP and Crkl was investigated by co-immunoprecipitation, confocal microscopy, and pull-down assays using Crkl domains expressed as GST-fusion proteins.
Results: Surprisingly, we found that activation of Rap1b in response to thrombin, ADP, or U46619 was significantly reduced in platelets from VASP-null mice compared to platelets from wild type mice. However, inhibition of thrombin-induced activation of Rap1b by nitric oxide was similar in platelets from wild type and VASP-null mice indicating that the NO/cGMP/PKG pathway controls inhibition of Rap1b independently from VASP. To understand how VASP regulated Rap1b, we investigated association between VASP and the Crk-like protein (Crkl), an adapter protein which activates the Rap1b guanine nucleotide exchange factor C3G. We demonstrated the formation of a Crkl/VASP complex by showing that: 1) Crkl co-immunoprecipitated VASP from platelet lysates; 2) Crkl and VASP dynamically co-localized at actin-rich protrusions reminiscent of focal adhesions, filopodia, and lamellipodia upon platelet spreading on fibronectin; 3) recombinant VASP bound directly to the N-terminal SH3 domain of Crkl; 4) PKA-mediated VASP phosphorylation on Ser157 abrogated the binding of Crkl.
Conclusions: We identified Crkl as a novel protein interacting with VASP in platelets. We propose that the C3G/Crkl/VASP complex plays a role in the regulation of Rap1b and this explains, at least in part, the reduced agonist-induced activation of Rap1b in VASP-null platelets. In addition, the fact that PKA-dependent VASP phosphorylation abrogated its interaction with Crkl may provide, at least in part, a rationale for the PKA-dependent inhibition of Rap1b and platelet aggregation.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
microRNA (miRNA) mediated regulation of protein expression has emerged as an important mechanism in T-cell physiology, from development and survival to activation, proliferation, and differentiation. One of the major classes of proteins involved in these processes are cytokines, which are both key input signals and major products of T-cell function. Here, we summarize the current data on the molecular cross-talk between cytokines and miRNAs: how cytokines regulate miRNA expression, and how specific miRNAs control cytokine production in T cells. We also describe the inflammatory consequences of deregulating the miRNA/cytokine axis in mice and humans. We believe this topical area will have key implications for immune modulation and treatment of autoimmune pathology.
Resumo:
Plant reproduction depends on the concerted activation of many genes to ensure correct communication between pollen and pistil. Here, we queried the whole transcriptome of Arabidopsis (Arabidopsis thaliana) in order to identify genes with specific reproductive functions. We used the Affymetrix ATH1 whole genome array to profile wild-type unpollinated pistils and unfertilized ovules. By comparing the expression profile of pistils at 0.5, 3.5, and 8.0 h after pollination and applying a number of statistical and bioinformatics criteria, we found 1,373 genes differentially regulated during pollen-pistil interactions. Robust clustering analysis grouped these genes in 16 time-course clusters representing distinct patterns of regulation. Coregulation within each cluster suggests the presence of distinct genetic pathways, which might be under the control of specific transcriptional regulators. A total of 78% of the regulated genes were expressed initially in unpollinated pistil and/or ovules, 15% were initially detected in the pollen data sets as enriched or preferentially expressed, and 7% were induced upon pollination. Among those, we found a particular enrichment for unknown transcripts predicted to encode secreted proteins or representing signaling and cell wall-related proteins, which may function by remodeling the extracellular matrix or as extracellular signaling molecules. A strict regulatory control in various metabolic pathways suggests that fine-tuning of the biochemical and physiological cellular environment is crucial for reproductive success. Our study provides a unique and detailed temporal and spatial gene expression profile of in vivo pollen-pistil interactions, providing a framework to better understand the basis of the molecular mechanisms operating during the reproductive process in higher plants.
Resumo:
The function of a complex nervous system relies on an intricate interaction between neurons and glial cells. However, as glial cells are generally born distant from the place where they settle, molecular cues are important to direct their migration. Glial cell migration is important in both normal development and disease, thus current research in the laboratory has been focused on dissecting regulatory events underlying that crucial process. With this purpose, the Drosophila eye imaginal disc has been used as a model. In response to neuronal photoreceptor differentiation, glial cells migrate from the CNS into the eye disc where they act to correctly wrap axons. To ensure proper development, attractive and repulsive signals must coordinate glial cell migration. Importantly, one of these signals is Bnl, a Fibroblast Growth Factor (FGF) ligand expressed by retinal progenitor cells that was suggested to act as a non-autonomous negative regulator of excessive glial cell migration (overmigration) by binding and activating the Btl receptor expressed by glial cells. Through the experimental results described in chapter 3 we gained a detailed insight into the function of bnl in eye disc growth, photoreceptor development, and glia migration. Interestingly, we did not find a direct correlation between the defects on the ongoing photoreceptors and the glia overmigration phenotype; however, bnl knockdown caused apoptosis of eye progenitor cells what was strongly correlated with glia migration defects. Glia overmigration due to Bnl down-regulation in eye progenitor cells was rescued by inhibiting the pro-apoptotic genes or caspases activity, as well as, by depleting JNK or Dp53 function in retinal progenitor cells. Thus, we suggest a cross-talk between those developmental signals in the control of glia migration at a distance. Importantly, these results suggest that Bnl does not control glial migration in the eye disc exclusively through its ability to bind and activate its receptor Btl in glial cells. We also discuss possible biological roles for the glia overmigration in the bnl knockdown background. Previous results in the lab showed an interaction between dMyc, a master regulator of tissue growth, and Dpp, a Transforming Growth Factor-β important for retinal patterning and for accurate glia migration into the eye disc. Thus, we became interested in understanding putative relationships between Bnl and dMyc. In chapter 4, we show that they positively cooperate in order to ensure proper development of the eye disc. This work highlights the importance of the FGF signaling in eye disc development and reveals a signaling network where a range of extra- and intra-cellular signals cooperate to non-autonomously control glial cell migration. Therefore, such inter-relations could be important in other Drosophila cellular contexts, as well as in vertebrate tissue development.
Resumo:
Congenital heart disease (CHD) is the most common birth defect, causing an important rate of morbidity and mortality. Treatment of CHD requires surgical correction in a significant percentage of cases which exposes patients to cardiac and end organ injury. Cardiac surgical procedures often require the utilisation of cardiopulmonary bypass (CPB), a system that replaces heart and lungs function by diverting circulation into an external circuit. The use of CPB can initiate potent inflammatory responses, in addition a proportion of procedures require a period of aortic cross clamp during which the heart is rendered ischaemic and is exposed to injury. High O2 concentrations are used during cardiac procedures and when circulation is re-established to the heart which had adjusted metabolically to ischaemia, further injury is caused in a process known as ischaemic reperfusion injury (IRI). Several strategies are in place in order to protect the heart during surgery, however injury is still caused, having detrimental effects in patients at short and long term. Remote ischaemic preconditioning (RIPC) is a technique proposed as a potential cardioprotective measure. It consists of exposing a remote tissue bed to brief episodes of ischaemia prior to surgery in order to activate protective pathways that would act during CPB, ischaemia and reperfusion. This study aimed to assess RIPC in paediatric patients requiring CHD surgical correction with a translational approach, integrating clinical outcome, marker analysis, cardiac function parameters and molecular mechanisms within the cardiac tissue. A prospective, single blinded, randomized, controlled trial was conducted applying a RIPC protocol to randomised patients through episodes of limb ischaemia on the day before surgery which was repeated right before the surgery started, after anaesthesia induction. Blood samples were obtained before surgery and at three post-operative time points from venous lines, additional pre and post-bypass blood samples were obtained from the right atrium. Myocardial tissue was resected during the ischaemic period of surgery. Echocardiographic images were obtained before the surgery started after anaesthetic induction and the day after surgery, images were stored for later off line analysis. PICU surveillance data was collected including ventilation parameters, inotrope use, standard laboratory analysis and six hourly blood gas analysis. Pre and post-operative quantitation of markers in blood specimens included cardiac troponin I (cTnI) and B-type natriuretic peptide (BNP), inflammatory mediators including interleukins IL-6, IL-8, IL-10, tumour necrosis factor (TNF-α), and the adhesion molecules ICAM-1 and VCAM-1; the renal marker Cystatin C and the cardiovascular markers asymmetric dymethylarginine (ADMA) and symmetric dymethylarginine (SDMA). Nitric oxide (NO) metabolites and cyclic guanosine monophosphate (cGMP) were measured before and after bypass. Myocardial tissue was processed at baseline and after incubation at hyperoxic concentration during four hours in order to mimic surgical conditions. Expression of genes involved in IRI and RIPC pathways was analysed including heat shock proteins (HSPs), toll like receptors (TLRs), transcription factors nuclear factor κ-B (NF- κ-B) and hypoxia inducible factor 1 (HIF-1). The participation of hydrogen sulfide enzymatic genes, apelin and its receptor were explored. There was no significant difference according to group allocation in any of the echocardiographic parameters. There was a tendency for higher cTnI values and inotropic score in control patients post-operatively, however this was not statistically significant. BNP presented no significant difference according to group allocation. Inflammatory parameters tended to be higher in the control group, however only TNF- α was significantly higher. There was no difference in levels of Cystatin C, NO metabolites, cGMP, ADMA or SDMA. RIPC patients required shorter PICU stay, all other clinical and laboratory analysis presented no difference related to the intervention. Gene expression analysis revealed interesting patterns before and after incubation. HSP-60 presented a lower expression at baseline in tissue corresponding to RIPC patients, no other differences were found. This study provided with valuable descriptive information on previously known and newly explored parameters in the study population. Demographic characteristics and the presence of cyanosis before surgery influenced patterns of activity in several parameters, numerous indicators were linked to the degree of injury suffered by the myocardium. RIPC did not reduce markers of cardiac injury or improved echocardiographic parameters and it did not have an effect on end organ function; some effects were seen in inflammatory responses and gene expression analysis. Nevertheless, an important clinical outcome indicator, PICU length of stay was reduced suggesting benefit from the intervention. Larger studies with more statistical power could determine if the tendency of lower injury and inflammatory markers linked to RIPC is real. The present results mostly support findings of larger multicentre trials which have reported no cardiac benefit from RIPC in paediatric cardiac surgery.