980 resultados para MODIFIED ELECTRODES
Resumo:
Chemically synthesized AgTCNQ exists in two forms that differ in their morphologies (needles and microcrystals) and colors (red and blue). It is now shown that both forms exhibit essentially indistinguishable X-ray diffraction, spectroscopic, and thermochemical data, implying that they are not separate phases, as implied in some literature. Electrochemical reduction of TCNQ((MeCN)) in the presence of Ag+((MeCN)) generates both red and blue AgTCNQ. On glassy carbon, platinum, or indium tin oxide electrodes and at relatively positive deposition potentials, slow growth of high aspect ratio, red needle AgTCNQ crystals occurs. After longer times and at more negative deposition potentials, blue microcrystalline AgTCNQ thin films are favored. Blue AgTCNQ is postulated to be generated via reduction of a Ag+\[(TCNQ(center dot-))(TCNQ)]((MeCN)) intermediate. At even more negative potentials, Ag-(metal) formation inhibits further growth of AgTCNQ. On a gold electrode, Ag-(metal)) deposition occurs at more positive potentials than on the other electrode materials examined. However, surface plasmon resonance data indicate (hat a small potential region is available between the stripping of Ag-(metal)) and the oxidation of TCNQ(center dot-)(MeCN) back to TCNQ(MeCN) where AgTCNQ may form. AgTCNQ in both the red and blue forms also can be prepared electrochemically on a TCNQ((s)) modified electrode in -0.1 M AgNO3(aq) where deposition of Ag(m,,,I) onto the TCNQ((s)) crystals allows a charge transfer process to occur. However, the morphology formed in this solid-solid phase transformation is more difficult to control.
Resumo:
Poly(l-lactide) (PLLA), a versatile biodegradable polymer, is one of the most commonly-used materials for tissue engineering applications. To improve cell affinity for PLLA, poly(ethylene glycol) (PEG) was used to develop diblock copolymers. Human bone marrow stromal cells (hBMSCs) were cultured on MPEG-b-PLLA copolymer films to determine the effects of modification on the attachment and proliferation of hBMSC. The mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analyzed using RT-qPCR to understand the underlying mechanisms. It was found that MPEG-b-PLLA copolymer films significantly improved cell adhesion, extension, and proliferation.This was found to be related to the significant upregulation of two adhesion genes, CDH1 and CTNND2, which encode 1-cadherin and delta-2-catenin, respectively, two key components for the cadherin-catenin complex. In summary, MPEG-b-PLLA copolymer surfaces improved initial cell adhesion by stimulation of adhesion molecule gene expression.
Resumo:
The wide applicability of correlation analysis inspired the development of this paper. In this paper, a new correlated modified particle swarm optimization (COM-PSO) is developed. The Correlation Adjustment algorithm is proposed to recover the correlation between the considered variables of all particles at each of iterations. It is shown that the best solution, the mean and standard deviation of the solutions over the multiple runs as well as the convergence speed were improved when the correlation between the variables was increased. However, for some rotated benchmark function, the contrary results are obtained. Moreover, the best solution, the mean and standard deviation of the solutions are improved when the number of correlated variables of the benchmark functions is increased. The results of simulations and convergence performance are compared with the original PSO. The improvement of results, the convergence speed, and the ability to simulate the correlated phenomena by the proposed COM-PSO are discussed by the experimental results.
Resumo:
This paper presents a new algorithm based on a Modified Particle Swarm Optimization (MPSO) to estimate the harmonic state variables in a distribution networks. The proposed algorithm performs the estimation for both amplitude and phase of each injection harmonic currents by minimizing the error between the measured values from Phasor Measurement Units (PMUs) and the values computed from the estimated parameters during the estimation process. The proposed algorithm can take into account the uncertainty of the harmonic pseudo measurement and the tolerance in the line impedances of the network as well as the uncertainty of the Distributed Generators (DGs) such as Wind Turbines (WTs). The main features of the proposed MPSO algorithm are usage of a primary and secondary PSO loop and applying the mutation function. The simulation results on 34-bus IEEE radial and a 70-bus realistic radial test networks are presented. The results demonstrate that the speed and the accuracy of the proposed Distribution Harmonic State Estimation (DHSE) algorithm are very excellent compared to the algorithms such as Weight Least Square (WLS), Genetic Algorithm (GA), original PSO, and Honey Bees Mating Optimization (HBMO).
Resumo:
This paper presents an efficient algorithm for multi-objective distribution feeder reconfiguration based on Modified Honey Bee Mating Optimization (MHBMO) approach. The main objective of the Distribution feeder reconfiguration (DFR) is to minimize the real power loss, deviation of the nodes’ voltage. Because of the fact that the objectives are different and no commensurable, it is difficult to solve the problem by conventional approaches that may optimize a single objective. So the metahuristic algorithm has been applied to this problem. This paper describes the full algorithm to Objective functions paid, The results of simulations on a 32 bus distribution system is given and shown high accuracy and optimize the proposed algorithm in power loss minimization.
Resumo:
Radical-directed dissociation of gas phase ions is emerging as a powerful and complementary alternative to traditional tandem mass spectrometric techniques for biomolecular structural analysis. Previous studies have identified that coupling of 2-[(2,2,6,6-tetramethylpiperidin-1-oxyl)methyl] benzoic acid (TEMPO-Bz) to the N-terminus of a peptide introduces a labile oxygen-carbon bond that can be selectively activated upon collisional activation to produce a radical ion. Here we demonstrate that structurally-defined peptide radical ions can also be generated upon UV laser photodissociation of the same TEMPO-Bz derivatives in a linear ion-trap mass spectrometer. When subjected to further mass spectrometric analyses, the radical ions formed by a single laser pulse undergo identical dissociations as those formed by collisional activation of the same precursor ion, and can thus be used to derive molecular structure. Mapping the initial radical formation process as a function of photon energy by photodissociation action spectroscopy reveals that photoproduct formation is selective but occurs only in modest yield across the wavelength range (300-220 nm), with the photoproduct yield maximised between 235 and 225 nm. Based on the analysis of a set of model compounds, structural modifications to the TEMPO-Bz derivative are suggested to optimise radical photoproduct yield. Future development of such probes offers the advantage of increased sensitivity and selectivity for radical-directed dissociation. © 2014 the Owner Societies.
Resumo:
We report a novel technology for the rapid healing of large osseous and chondral defects, based upon the genetic modification of autologous skeletal muscle and fat grafts. These tissues were selected because they not only possess mesenchymal progenitor cells and scaffolding properties, but also can be biopsied, genetically modified and returned to the patient in a single operative session. First generation adenovirus vector carrying cDNA encoding human bone morphogenetic protein-2 (Ad.BMP-2) was used for gene transfer to biopsies of muscle and fat. To assess bone healing, the genetically modified (“gene activated”) tissues were implanted into 5mm-long critical size, mid-diaphyseal, stabilized defects in the femora of Fischer rats. Unlike control defects, those receiving gene-activated muscle underwent rapid healing, with evidence of radiologic bridging as early as 10 days after implantation and restoration of full mechanical strength by 8 weeks. Histologic analysis suggests that the grafts rapidly differentiated into cartilage, followed by efficient endochondral ossification. Fluorescence in situ hybridization detection of Y-chromosomes following the transfer of male donor muscle into female rats demonstrated that at least some of the osteoblasts of the healed bone were derived from donor muscle. Gene activated fat also healed critical sized defects, but less quickly than muscle and with more variability. Anti-adenovirus antibodies were not detected. Pilot studies in a rabbit osteochondral defect model demonstrated the promise of this technology for healing cartilage defects. Further development of these methods should provide ways to heal bone and cartilage more expeditiously, and at lower cost, than is presently possible.
Resumo:
The Child Feeding Questionnaire (CFQ) developed by Birch and colleagues (2001) is a widely used tool for measuring parental feeding beliefs, attitudes and practices. However, the appropriateness of the CFQ for use with Chinese populations is unknown. This study tested the construct validity of a novel Chinese version of the CFQ using confirmatory factor analysis (CFA). Participants included a convenience sample of 254 Chinese-Australian mothers of children aged 1-4 years. Prior to testing, the questionnaire was translated into Chinese using a translation-back-translation method, one item was re-worded to be culturally appropriate, a new item was added (monitoring), and five items that were not age-appropriate for the sample were removed. Based on previous literature, both a 7-factor and an 8-factor model were assessed via CFA. Results showed that the 8-factor model, which separated restriction and use of food rewards, improved the conceptual clarity of the constructs and provided a good fit to the data. Internal consistency of all eight factors was acceptable (Cronbach’s α: .60−.93). This modified 8-factor CFQ appears to be a linguistically and culturally appropriate instrument for assessing feeding beliefs and practices in Chinese-Australian mothers of young children.
Resumo:
Apples are rich in polyphenols, which provide antioxidant properties, mediation of cellular processes such as inflammation, and modulation of gut microbiota. In this study we compared genetically engineered apples with increased flavonoids [myeloblastis transcription factor 10 (MYB10)] with nontransformed apples from the same genotype, "Royal Gala" (RG), and a control diet with no apple. Compared with the RG diet, the MYB10 diet contained elevated concentrations of the flavonoid subclasses anthocyanins, flavanol monomers (epicatechin) and oligomers (procyanidin B2), and flavonols (quercetin glycosides), but other plant secondary metabolites were largely unaltered. We used these apples to investigate the effects of dietary flavonoids on inflammation and gut microbiota in 2 mouse feeding trials. In trial 1, male mice were fed a control diet or diets supplemented with 20% MYB10 apple flesh and peel (MYB-FP) or RG apple flesh and peel (RG-FP) for 7 d. In trial 2, male mice were fed MYB-FP or RG-FP diets or diets supplemented with 20% MYB10 apple flesh or RG apple flesh for 7 or 21 d. In trial 1, the transcription levels of inflammation-linked genes in mice showed decreases of >2-fold for interleukin-2 receptor (Il2rb), chemokine receptor 2 (Ccr2), chemokine ligand 10 (Cxcl10), and chemokine receptor 10 (Ccr10) at 7 d for the MYB-FP diet compared with the RG-FP diet (P <0.05). In trial 2, the inflammation marker prostaglandin E2 (PGE2) in the plasma of mice fed the MYB-FP diet at 21 d was reduced by 10-fold (P < 0.01) compared with the RG-FP diet. In colonic microbiota, the number of total bacteria for mice fed the MYB-FP diet was 6% higher than for mice fed the control diet at 21 d (P = 0.01). In summary, high-flavonoid apple was associated with decreases in some inflammation markers and changes in gut microbiota when fed to healthy mice.
Resumo:
Consumers of whole foods, such as fruits, demand consistent high quality and seek varieties with enhanced health properties, convenience or novel taste. We have raised the polyphenolic content of apple by genetic engineering of the anthocyanin pathway using the apple transcription factor MYB10. These apples have very high concentrations of foliar, flower and fruit anthocyanins, especially in the fruit peel. Independent lines were examined for impacts on tree growth, photosynthesis and fruit characteristics. Fruit were analysed for changes in metabolite and transcript levels. Fruit were also used in taste trials to study the consumer perception of such a novel apple. No negative taste attributes were associated with the elevated anthocyanins. Modification with this one gene provides near isogenic material and allows us to examine the effects on an established cultivar, with a view to enhancing consumer appeal independently of other fruit qualities. © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Resumo:
Ozone-induced dissociation (OzID) exploits the gas-phase reaction between mass-selected lipid ions and ozone vapor to determine the position(s) of unsaturation In this contribution, we describe the modification of a tandem linear ion-trap mass spectrometer specifically for OzID analyses wherein ozone vapor is supplied to the collision cell This instrumental configuration provides spatial separation between mass-selection, the ozonolysis reaction, and mass-analysis steps in the OzID process and thus delivers significant enhancements in speed and sensitivity (ca 30-fold) These improvements allow spectra revealing the double-bond position(s) within unsaturated lipids to be acquired within 1 s significantly enhancing the utility of OzID in high-throughput lipidomic protocols The stable ozone concentration afforded by this modified instrument also allows direct comparison of relative reactivity of isomeric lipids and reveals reactivity trends related to (1) double-bond position, (2) substitution position on the glycerol backbone, and (3) stereochemistry For cis- and trans-isomers, differences were also observed in the branching ratio of product ions arising from the gas-phase ozonolysis reaction, suggesting that relative ion abundances could be exploited as markers for double-bond geometry Additional activation energy applied to mass-selected lipid ions during injection into the collision cell (with ozone present) was found to yield spectra containing both OzID and classical-CID fragment ions This combination CID-OzID acquisition on an ostensibly simple monounsaturated phosphatidylcholine within a cow brain lipid extract provided evidence for up to four structurally distinct phospholipids differing in both double-bond position and sn-substitution U Am Soc Mass Spectrom 2010, 21, 1989-1999) (C) 2010 American Society for Mass Spectrometry
Resumo:
Objectives This study explored the criterion-related validity and test-retest reliability of the modified RESIDential Environment physical activity questionnaire and whether the instrument's validity varied by body mass index, education, race/ethnicity, or employment status. Design Validation study using baseline data collected for randomized trial of a weight loss intervention. Methods Participants recruited from health departments wore an ActiGraph accelerometer and self-reported non-occupational walking, moderate and vigorous physical activity on the modified RESIDential Environment questionnaire. We assessed validity (n = 152) using Spearman correlation coefficients, and reliability (n = 57) using intraclass correlation coefficients. Results When compared to steps, moderate physical activity, and bouts of moderate/vigorous physical activity measured by accelerometer, these questionnaire measures showed fair evidence for validity: recreational walking (Spearman correlation coefficients 0.23–0.36), total walking (Spearman correlation coefficients 0.24–0.37), and total moderate physical activity (Spearman correlation coefficients 0.18–0.36). Correlations for self-reported walking and moderate physical activity were higher among unemployed participants and women with lower body mass indices. Generally no other variability in the validity of the instrument was found. Evidence for reliability of RESIDential Environment measures of recreational walking, total walking, and total moderate physical activity was substantial (intraclass correlation coefficients 0.56–0.68). Conclusions Evidence for questionnaire validity and reliability varied by activity domain and was strongest for walking measures. The questionnaire may capture physical activity less accurately among women with higher body mass indices and employed participants. Capturing occupational activity, specifically walking at work, may improve questionnaire validity.
Resumo:
Unfortunately, there is no reliable method to adequately quantify discomfort glare. One of the world's largest investigations on discomfort glare was conducted in five Green Star office buildings in Brisbane. Luminance mapping via high dynamic range images and Post Occupancy Evaluation surveys were used in the data collection. A new glare index, termed the Unified Glare Probability, was developed to predict discomfort glare within these types of office buildings.
Resumo:
Carbon nanowalls (CNWs) are self-assembled, free-standing, few-layered graphenenano-structures with large surface area, and thin graphene edges. For their application to nanobiotechnology, the effects of chemisorbed species on surface wettability were investigated. The surfaces of as-grown CNWs obtained using CH4/H2 mixture were hydrophilic. After Ar atmospheric pressure plasma treatments for up to 30 s, the contact angles of water droplets on the CNWs decreased from 51° to 5°, owing to a result of oxidation only at edges and surface defects. They increased up to 147° by CF4 plasma treatment at low pressure. The wide-range control of surface wettability of CNWs was realized by post-growth plasma treatments. We also demonstrated detection of bovine serum albumin using surface-modified CNWs as electrodes.
Resumo:
Vertical graphene nanosheets (VGNS) hold great promise for high-performance supercapacitors owing to their excellent electrical transport property, large surface area and in particular, an inherent three-dimensional, open network structure. However, it remains challenging to materialise the VGNS-based supercapacitors due to their poor specific capacitance, high temperature processing, poor binding to electrode support materials, uncontrollable microstructure, and non-cost effective way of fabrication. Here we use a single-step, fast, scalable, and environmentally-benign plasma-enabled method to fabricate VGNS using cheap and spreadable natural fatty precursor butter, and demonstrate the controllability over the degree of graphitization and the density of VGNS edge planes. Our VGNS employed as binder-free supercapacitor electrodes exhibit high specific capacitance up to 230 F g−1 at a scan rate of 10 mV s−1 and >99% capacitance retention after 1,500 charge-discharge cycles at a high current density, when the optimum combination of graphitic structure and edge plane effects is utilised. The energy storage performance can be further enhanced by forming stable hybrid MnO2/VGNS nano-architectures which synergistically combine the advantages from both VGNS and MnO2. This deterministic and plasma-unique way of fabricating VGNS may open a new avenue for producing functional nanomaterials for advanced energy storage devices.