966 resultados para MITOTIC SPINDLE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chalazal megaspore develops in a Polygonum-type embryo sac. The amyloplast-rich endothelium is partially degraded during the expansion of the micropylar portion of the megagametophyte. Organization of the mature embryo sac is determined by the patterns of vacuolation, nuclear migration, spindle orientation and cellularization. The egg cell is slightly chalazal in relation to the synergids, and its micropylar end does not touch the micropylar channel. At the chalazal pole of the egg apparatus, the common walls between the synergids, the egg and central cells, despite their tenuity, are present in the mature megagametophyte. The polar nuclei do not fuse before fertilization and the antipodals are persistent until the first stages of endosperm formation. The taxonomic significance of some embryological characters for the Bignoniaceae is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heat shock factors (HSFs) are an evolutionarily well conserved family of transcription factors that coordinate stress-induced gene expression and direct versatile physiological processes in eukaryote organisms. The essentiality of HSFs for cellular homeostasis has been well demonstrated, mainly through HSF1-induced transcription of heat shock protein (HSP) genes. HSFs are important regulators of many fundamental processes such as gametogenesis, metabolic control and aging, and are involved in pathological conditions including cancer progression and neurodegenerative diseases. In each of the HSF-mediated processes, however, the detailed mechanisms of HSF family members and their complete set of target genes have remained unknown. Recently, rapid advances in chromatin studies have enabled genome-wide characterization of protein binding sites in a high resolution and in an unbiased manner. In this PhD thesis, these novel methods that base on chromatin immunoprecipitation (ChIP) are utilized and the genome-wide target loci for HSF1 and HSF2 are identified in cellular stress responses and in developmental processes. The thesis and its original publications characterize the individual and shared target genes of HSF1 and HSF2, describe HSF1 as a potent transactivator, and discover HSF2 as an epigenetic regulator that coordinates gene expression throughout the cell cycle progression. In male gametogenesis, novel physiological functions for HSF1 and HSF2 are revealed and HSFs are demonstrated to control the expression of X- and Y-chromosomal multicopy genes in a silenced chromatin environment. In stressed human cells, HSF1 and HSF2 are shown to coordinate the expression of a wide variety of genes including genes for chaperone machinery, ubiquitin, regulators of cell cycle progression and signaling. These results highlight the importance of cell type and cell cycle phase in transcriptional responses, reveal the myriad of processes that are adjusted in a stressed cell and describe novel mechanisms that maintain transcriptional memory in mitotic cell division.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cell is continuously subjected to various forms of external and intrinsic proteindamaging stresses, including hyperthermia, pathophysiological states, as well as cell differentiation and proliferation. Proteindamaging stresses result in denaturation and improper folding of proteins, leading to the formation of toxic aggregates that are detrimental for various pathological conditions, including Alzheimer’s and Huntington’s diseases. In order to maintain protein homeostasis, cells have developed different cytoprotective mechanisms, one of which is the evolutionary well-conserved heat shock response. The heat shock response results in the expression of heat shock proteins (Hsps), which act as molecular chaperones that bind to misfolded proteins, facilitate their refolding and prevent the formation of protein aggregates. Stress-induced expression of Hsps is mediated by a family of transcription factors, the heat shock factors, HSFs. Of the four HSFs found in vertebrates, HSF1-4, HSF1 is the major stress-responsive factor that is required for the induction of the heat shock response. HSF2 cannot alone induce Hsps, but modulates the heat shock response by forming heterotrimers with HSF1. HSFs are not only involved in the heat shock response, but they have also been found to have a function in development, neurodegenerative disorders, cancer, and longevity. Therefore, insight into how HSFs are regulated is important for the understanding of both normal physiological and disease processes. The activity of HSF1 is mainly regulated by intricate post-translational modifications, whereas the activity of HSF2 is concentrationdependent. However, there is only limited understanding of how the abundance of HSF2 is regulated. This study describes two different means of how HSF2 levels are regulated. In the first study it was shown that microRNA miR-18, a member of the miR-17~92 cluster, directly regulates Hsf2 mRNA stability and thus protein levels. HSF2 has earlier been shown to play a profound role in the regulation of male germ cell maturation during the spermatogenesis. The effect on miR-18 on HSF2 was examined in vivo by transfecting intact seminiferous tubules, and it was found that inhibition of miR-18 resulted in increased HSF2 levels and modified expression of the HSF2 targets Ssty2 and Speer4a. HSF2 has earlier been reported to modulate the heat shock response by forming heterotrimers with HSF1. In the second study, it was shown that HSF2 is cleared off the Hsp70 promoter and degraded by the ubiquitinproteasome pathway upon acute stress. By silencing components of the anaphase promoting complex/cyclosome (APC/C), including the co-activators Cdc20 and Cdh1, it was shown that APC/C mediates the heatinduced ubiquitylation of HSF2. Furthermore, down-regulation of Cdc20 was shown to alter the expression of heat shock-responsive genes. Next, we studied if APC/C-Cdc20, which controls cell cycle progression, also regulates HSF2 during the cell cycle. We found that both HSF2 mRNA and protein levels decreased during mitosis in several but not all human cell lines, indicating that HSF2 has a function in mitotic cells. Interestingly, although transcription is globally repressed during mitosis, mainly due to the displacement of RNA polymerase II and transcription factors, including HSF1, from the mitotic chromatin, HSF2 is capable of binding DNA during mitosis. Thus, during mitosis the heat shock response is impaired, leaving mitotic cells vulnerable to proteotoxic stress. However, in HSF2-deficient mitotic cells the Hsp70 promoter is accessible to both HSF1 and RNA polymerase II, allowing for stress-inducible Hsp expression to occur. As a consequence HSF2-deficient mitotic cells have a survival advantage upon acute heat stress. The results, presented in this thesis contribute to the understanding of the regulatory mechanisms of HSF2 and its function in the heat shock response in both interphase and mitotic cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The meiotic behavior of fourteen Passiflora taxa was analyzed. The species were grouped according to the n value (6, 9 and 12) for statistical studies. Some species presented tetravalent associations or univalent chromosomes in diakinesis, bivalent formation prevailing. The qui-square test revealed significant differences in the chiasma frequency among species for n = 9 and n = 6 groups. There was predominance of interstitial chiasmata in almost all studied species. The n = 12 group was the only one whose meiotic behavior was considered similar due to the quantity of chiasmata per cell, tendency of interstitial chiasma localization. Some species presented meiotic irregularities, such as laggard and precocious chromosomes in meiosis I. In telophase II the percentages of meiotic irregularities was low. Irregularities in the spindle orientation were presented in higher percentages in the end of meiosis II, and were also responsible for post-meiotic abnormal products. The irregularities observed during meiosis can have influence on the percentage of sterile pollen grains and success of interspecific crossings in Passiflora species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromosome abnormalities and the mitotic index in lymphocyte cultures and micronuclei in buccal mucosa cells were investigated in a sample of underground mineral coal miners from Southern Brazil. A decreased mitotic index, an excess of micronuclei and a higher frequency of chromosome abnormalities (fragments, polyploidy and overall chromosome alterations) were observed in the miners when compared to age-paired normal controls from the same area. An alternative assay for clastogenesis in occupational exposition was tested by submitting lymphocytes from non-exposed individuals to a pool of plasmas from the exposed population. This assay proved to be very convenient, as the lymphocytes obtained from the same individuals can be used as target as well as control cells. Also, it yielded a larger number of metaphases and of successful cultures than with common lymphocyte cultures from miners. A significantly higher frequency of chromatid gaps, fragments and overall alterations were observed when lymphocytes from control subjects were exposed to miner plasma pools. Control plasma pools did not significantly induce any type of chromosome alterations in the cultures of normal subjects, thus indicating that the results are not due to the effect of the addition of plasma pools per se.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The herbicide metolachlor was evaluated for genotoxic potential. Metolachlor did not induce micronuclei in mice, however at 40 mg/kg it significantly decreased the percentage of polychromatic erythrocytes, which is a cytotoxic effect. Metolachlor did not induce chromosomal aberrations in human lymphocytes in vitro, but 2.0 mug/ml culture medium resulted in cytotoxicity, decreasing the mitotic index significantly. The indirect exposure test was carried out by adding plasma from metolachlor-pretreated rats to the human lymphocyte cultures. There was no indication of clastogenicity by metolachlor metabolites. On the other hand, plasma of cyclophosphamide-pretreated rats had a significant clastogenic effect

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mitotic chromosomes of 51 citrus accessions from the Centro Nacional de Pesquisa em Mandioca e Fruticultura Tropical, Cruz das Almas, BA, Brazil, were analyzed. The sample included representatives of 20 Citrus species, one of Poncirus and seven hybrids. All accessions showed 2n = 18 without any evidence of numerical variation. The most clearly variable karyotype feature was the number and position of secondary constrictions (SECs). In 19 accessions the SECs were not identified, mainly due to the degree of chromatin condensation. In the remainder they varied in number from one to three per karyotype. They were found in the proximal region of one of the three largest chromosome pairs, in the terminal/subterminal region of a smaller chromosome or, more seldom, terminally in a larger chromosome. Only in a few cases were such constrictions observed simultaneously in both homologues of the same chromosome pair. The high variability of this karyotype feature may be due to the activation of this region in the previous interphase but may also indicate a high structural variability and heterozygosity of citrus germplasms

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The possibility that Ureaplasma urealyticum might play an important role in human infertility was first raised more than 20 years ago, but this association remains speculative. Considering the hypothesis that the pathogenicity of Ureaplasma urealyticum may depend on its serotypes, the clastogenic effects of different strains of Ureaplasma urealyticum, at concentrations of 103 CCU (color changing units)/ml, 104 CCU/ml and 105 CCU/ml, were evaluated in vitro in short-term cultures of human lymphocytes. Total or partial mitotic inhibition was produced by Ureaplasma urealyticum serotypes 2, 3 and 10 independent of the concentration (103 CCU/ml, 104 CCU/ml or 105 CCU/ml) of the microorganisms employed. In contrast, the clastogenic effects observed with serotypes 1, 7 and 12 varied according to the concentration employed in the test. Mitotic alterations were observed in Ureaplasma urealyticum serotypes 5, 6, 7, 8, 9, 11 and 12. Chromatid gaps (53.0%) and chromatid breaks (13.9%) were the most frequent types of alterations observed. The results of this in vitro assay demonstrated that the clastogenic effects varied with the Ureaplasma urealyticum serotypes evaluated

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Centromere function requires the proper coordination of several subfunctions, such as kinetochore assembly, sister chromatid cohesion, binding of kinetochore microtubules, orientation of sister kinetochores to opposite spindle poles, and their movement towards the spindle poles. Centromere structure appears to be organized in different, separable domains in order to accomplish these functions. Despite the conserved nature of centromere functions, the molecular genetic definition of the DNA sequences that form a centromere in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, in the fruit fly Drosophila melanogaster, and in humans has revealed little conservation at the level of centromere DNA sequences. Also at the protein level few centromere proteins are conserved in all of these four organisms and many are unique to the different organisms. The recent analysis of the centromere structure in the yeast S. pombe by electron microscopy and detailed immunofluorescence microscopy of Drosophila centromeres have brought to light striking similarities at the overall structural level between these centromeres and the human centromere. The structural organization of the centromere is generally multilayered with a heterochromatin domain and a central core/inner plate region, which harbors the outer plate structures of the kinetochore. It is becoming increasingly clear that the key factors for assembly and function of the centromere structure are the specialized histones and modified histones which are present in the centromeric heterochromatin and in the chromatin of the central core. Thus, despite the differences in the DNA sequences and the proteins that define a centromere, there is an overall structural similarity between centromeres in evolutionarily diverse eukaryotes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sentinel node (SN) status is the most important prognostic factor for localized melanoma. Usually, patients with Breslow thickness of less than 1.0 mm are not included in SN protocols. However, the literature presents a rate ranging from 3 to 7% of nodal recurrence in thin melanoma. Ulceration, regression and high mitotic rate have been considered to be indications for an SN biopsy. The metastatic potential of the vertical growth phase is uncertain. To correlate pathological features in thin melanoma with SN metastasis, we reviewed 358 patients submitted to SN biopsy. Seventy-seven patients with lesions of 1 mm or smaller were included in the study group. Histological evaluation of the primary tumor included thickness, Clark level, mitotic rate, ulceration, regression, and growth phase. Lymphoscintigraphy was performed on all patients. Lymphatic mapping and gamma probe detection were both used for SN biopsy. Histological examination of SN consisted of hematoxylin-eosin and immunohistochemical staining. Median follow-up was 37 months. Six patients had micrometastases. Statistical analysis by the Fisher test showed that ulceration (P = 0.019), high mitotic rate (P = 0.008) and vertical growth phase (P = 0.002) were positively correlated with micrometastases. If other studies confirm these results, more melanoma patients must be submitted to SN biopsy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The analysis of chromosomal abnormalities is important for the study of hematological neoplastic disorders since it facilitates classification of the disease. The ability to perform chromosome analysis of cryopreserved malignant marrow or peripheral blast cells is important for retrospective studies. In the present study, we compared the karyotype of fresh bone marrow cells (20 metaphases) to that of cells stored with a simplified cryopreservation method, evaluated the effect of the use of granulocyte-macrophage colony-stimulating factor (GM-CSF) as an in vitro mitotic index stimulator, and compared the cell viability and chromosome morphology of fresh and cryopreserved cells whenever possible (sufficient metaphases for analysis). Twenty-five bone marrow samples from 24 patients with hematological disorders such as acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, chronic myeloid leukemia, megaloblastic anemia and lymphoma (8, 3, 3, 8, 1, and 1 patients, respectively) were selected at diagnosis, at relapse or during routine follow-up and one sample was obtained from a bone marrow donor after informed consent. Average cell viability before and after freezing was 98.8 and 78.5%, respectively (P < 0.05). Cytogenetic analysis was successful in 76% of fresh cell cultures, as opposed to 52% of cryopreserved samples (P < 0.05). GM-CSF had no proliferative effect before or after freezing. The morphological aspects of the chromosomes in fresh and cryopreserved cells were subjectively the same. The present study shows that cytogenetic analysis of cryopreserved bone marrow cells can be a reliable alternative when fresh cell analysis cannot be done, notwithstanding the reduced viability and lower percent of successful analysis that are associated with freezing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present investigation was to study the expression of c-erbB-2 and MIB-1 and try to associate them with morphological features of the cell such as nuclear pleomorphism, mitotic count and histological grade in a series of 70 canine mammary gland tumors, 22 of them benign and 48 malignant. Tumors were collected at the Veterinary Hospital of UFMG (Brazil) and the Veterinary Faculty of Porto University (Portugal). c-erbB-2 expression was determined according to the guidelines provided by the manufacturer of the HercepTest system and nuclear pleomorphism, mitotic count and histological grade according the Elston and Ellis grading system. The HercepTest is the FDA-approved in vitro diagnostic test marketed by Dako. It is a semi-quantitative immunohistochemical assay used to determine overexpression of HER2 protein (human epidermal growth factor receptor) in breast cancer tissue. MIB-1 expression was also evaluated in 28 malignant tumors. Seventeen (35.4%) of the malignant tumors were positive for c-erbB-2 expression, which was positively associated with nuclear pleomorphism (P < 0.0001), histological grade (P = 0.0017) and mitotic count (P < 0.05). Nuclear pleomorphism also showed a positive association with MIB-1 index (P < 0.0001). These results suggest that some of the biological and morphological characteristics of the tumor are associated in canine mammary gland tumors, as also reported for human breast cancer. It was also possible to show that the immunoexpression of c-erbB-2 can be a factor in mammary carcinogenesis. This fact opens the possibility of using anti-c-erbB-2 antibodies in the treatment of canine mammary tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mercury is a xenobiotic metal that is a highly deleterious environmental pollutant. The biotransformation of mercury chloride (HgCl2) into methylmercury chloride (CH3HgCl) in aquatic environments is well-known and humans are exposed by consumption of contaminated fish, shellfish and algae. The objective of the present study was to determine the changes induced in vitro by two mercury compounds (HgCl2 and CH3HgCl) in cultured human lymphocytes. Short-term human leukocyte cultures from 10 healthy donors (5 females and 5 males) were set-up by adding drops of whole blood in complete medium. Cultures were separately and simultaneously treated with low doses (0.1 to 1000 µg/l) of HgCl2 and CH3HgCl and incubated at 37ºC for 48 h. Genotoxicity was assessed by chromosome aberrations and polyploid cells. Mitotic index was used as a measure of cytotoxicity. A significant increase (P < 0.05) in the relative frequency of chromosome aberrations was observed for all concentrations of CH3HgCl when compared to control, whether alone or in an evident sinergistic combination with HgCl2. The frequency of polyploid cells was also significantly increased (P < 0.05) when compared to control after exposure to all concentrations of CH3HgCl alone or in combination with HgCl2. CH3HgCl significantly decreased (P < 0.05) the mitotic index at 100 and 1000 µg/l alone, and at 1, 10, 100, and 1000 µg/l when combined with HgCl2, showing a synergistic cytotoxic effect. Our data showed that low concentrations of CH3HgCl might be cytotoxic/genotoxic. Such effects may indicate early cellular changes with possible biological consequences and should be considered in the preliminary evaluation of the risks of populations exposed in vivo to low doses of mercury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autosomal recessive polycystic kidney disease (ARPKD) is an inherited disease characterized by a malformation complex which includes cystically dilated tubules in the kidneys and ductal plate malformation in the liver. The disorder is observed primarily in infancy and childhood, being responsible for significant pediatric morbidity and mortality. All typical forms of ARPKD are caused by mutations in a single gene, PKHD1 (polycystic kidney and hepatic disease 1). This gene has a minimum of 86 exons, assembled into multiple differentially spliced transcripts and has its highest level of expression in kidney, pancreas and liver. Mutational analyses revealed that all patients with both mutations associated with truncation of the longest open reading frame-encoded protein displayed the severe phenotype. This product, polyductin, is a 4,074-amino acid protein expressed in the cytoplasm, plasma membrane and primary apical cilia, a structure that has been implicated in the pathogenesis of different polycystic kidney diseases. In fact, cholangiocytes isolated from an ARPKD rat model develop shorter and dysmorphic cilia, suggesting polyductin to be important for normal ciliary morphology. Polyductin seems also to participate in tubule morphogenesis and cell mitotic orientation along the tubular axis. The recent advances in the understanding of in vitro and animal models of polycystic kidney diseases have shed light on the molecular and cellular mechanisms of cyst formation and progression, allowing the initiation of therapeutic strategy designing and promising perspectives for ARPKD patients. It is notable that vasopressin V2 receptor antagonists can inhibit/halt the renal cystic disease progression in an orthologous rat model of human ARPKD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) have been reported to secrete a variety of cytokines and growth factors acting as trophic suppliers, but little is known regarding the effects of conditioned medium (CM) of MSCs isolated from femurs and tibias of mouse on the artificial activation of mouse oocytes and on the developmental competence of the parthenotes. In the current study, we investigated the effect of CM on the events of mouse oocyte activation, namely oscillations of cytosolic calcium concentration ([Ca²+]i), meiosis resumption, pronucleus formation, and parthenogenetic development. The surface markers of MSCs were identified with a fluorescence-activated cell sorter. The dynamic changes of the spindle and formation of pronuclei were examined by laser-scanning confocal microscopy. Exposure of cumulus-oocyte complexes to CM for 40 min was optimal for inducing oocyte parthenogenetic activation and evoking [Ca²+]i oscillations similar to those evoked by sperm (95 vs 100%; P > 0.05). Parthenogenetically activated oocytes immediately treated with 7.5 µg/mL cytochalasin B (CB), which inhibited spindle rotation and second polar body extrusion, were mostly diploid (93 vs 6%, P < 0.01) while CB-untreated oocytes were mostly haploid (5 vs 83%, P < 0.01). Consequently, the blastocyst rate was higher in the CB-treated than in the CB-untreated oocytes. There was no significant difference in developmental rate between oocytes activated with CM and 7% ethanol (62 vs 62%, P > 0.05), but the developmental competence of the fertilized oocytes was superior to that of the parthenotes (88 vs 62%, P < 0.05). The present results demonstrate that CM can effectively activate mouse oocytes, as judged by the generation of [Ca²+]i oscillations, completion of meiosis and parthenogenetic development.