921 resultados para MITIGATION
Resumo:
Although many larger Iowa cities have staff traffic engineers who have a dedicated interest in safety, smaller jurisdictions do not. Rural agencies and small communities must rely on consultants, if available, or local staff to identify locations with a high number of crashes and to devise mitigating measures. However, smaller agencies in Iowa have other available options to receive assistance in obtaining and interpreting crash data. These options are addressed in this manual. Many proposed road improvements or alternatives can be evaluated using methods that do not require in-depth engineering analysis. The Iowa Department of Transportation (DOT) supported developing this manual to provide a tool that assists communities and rural agencies in identifying and analyzing local roadway-related traffic safety concerns. In the past, a limited number of traffic safety professionals had access to adequate tools and training to evaluate potential safety problems quickly and efficiently and select possible solutions. Present-day programs and information are much more conducive to the widespread dissemination of crash data, mapping, data comparison, and alternative selections and comparisons. Information is available and in formats that do not require specialized training to understand and use. This manual describes several methods for reviewing crash data at a given location, identifying possible contributing causes, selecting countermeasures, and conducting economic analyses for the proposed mitigation. The Federal Highway Administration (FHWA) has also developed other analysis tools, which are described in the manual. This manual can also serve as a reference for traffic engineers and other analysts.
Resumo:
El presente proyecto tiene por objetivo realizar una propuesta de cultivo de manzano (Malus domestica) en la Vall d’Alinyà para el desarrollo de un producto agroalimentario que contribuya a la revitalización de esta área rural y a la mitigación del calentamiento global. Para ello, se pretende proporcionar una metodología para calcular, con mayor precisión, el comportamiento de los cultivos como sumidero de carbono a partir del balance neto de gases con efecto invernadero (GEI) del sistema. Con tal de obtener las emisiones de GEI generadas por los cultivos se desarrolla un análisis del ciclo de vida (ACV), y para obtener la fijación de los cultivos, se realiza un análisis de su capacidad de absorción de dióxido de carbono en la biomasa de la plantación. Además, mediante el uso de sistemas de información geográfica (SIG), se determinaron los terrenos potenciales para el cultivo del manzano en la zona de estudio. Posteriormente, se verifica la certificación de créditos en el mercado de carbono voluntario y se analiza la viabilidad económica del proyecto, obteniendo así un producto (la manzana) con valor ambiental añadido. Como conclusión se obtuvo una viabilidad positiva de la verificación de créditos, puesto que el balance neto de carbono fue positivo, absorbiéndose 234,54 t CO2 en todo el territorio potencialmente cultivable (16,92 ha) y durante 15 años de actividad agrícola. Al mismo tiempo, la propuesta resultó viable económicamente, generándose unos beneficios ligados a la venta de producción frutícola y de los créditos de carbono de 79.484 € durante los 15 años de actividad productiva.
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.
Resumo:
A section of US 52 between Dubuque and Luxemburg, Iowa, was listed in the top 5% of Iowa highways for severe crashes involving impaired drivers and single vehicle run-off-road crashes during 2001–2005, and several crashes have occurred on this roadway near the towns of Luxemburg, Holy Cross, and Rickardsville, Iowa, many on curves. Staff and officials from the Iowa Department of Transportation (Iowa DOT), Iowa State Patrol, Governor’s Traffic Safety Bureau, Federal Highway Administration, Center for Transportation Research and Education Dubuque County, and a retired fire chief met to review crash data and discuss potential safety improvements to U.S. Highway 52. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this US 52 corridor and explains several mitigation strategies that the Iowa DOT District 6 Office has selected.
Resumo:
In April 2008 a preliminary investigation of fatal and major injury crashes on Iowa’s primary road system from 2001 through 2007 was conducted by the Iowa Department of Transportation, Office of Traffic and Safety. A mapping of these data revealed an apparent concentration of these serious crashes on a section of Iowa 25 north of Creston. Based on this information, a road safety audit of this roadway section was requested by the Office of Traffic and Safety. Iowa 25 is a two-lane asphaltic concrete pavement roadway, 22 ft in width with approximately 6 ft wide granular shoulders. Originally constructed in 1939, the roadway was last rehabilitated in 1996 with a 4-in. asphalt overlay. Except for shoulder paving through a curve area, no additional work beyond routine maintenance has been accomplished in the section. The 2004 traffic map indicates that IA 25 has a traffic volume of approximately 2070 vehicles per day with 160 commercial vehicles. The posted speed is 55 mph. This report contains a discussion of audit team findings, crash and roadway data, and recommendations for possible mitigation of safety concerns for this roadway section.
Resumo:
Approximately 13.2 miles of US 6 in eastern Iowa extends from the east corporate limits of Iowa City, Iowa, to the west corporate limits of West Liberty, Iowa. This segment of US 6 is a service level B primary highway, with an annual daily traffic volume varying from 3,480 vehicles per day (vpd) to 5,700 vpd. According to 2001–2007 crash density data from the Iowa Department of Transportation (Iowa DOT), the corridor is currently listed among the top 5% of non-freeway Iowa DOT roads in several crash categories, including crashes involving excessive speed, impaired drivers, single-vehicle run-off-road, and multiple-vehicle crossed centerline. A road safety audit of this corridor was deemed appropriate by the Iowa Department of Transportation’s Office of Traffic and Safety. Staff and officials from the Iowa DOT, Iowa State Patrol, Governor’s Traffic Safety Bureau, Federal Highway Administration, Center for Transportation Research and Education, and several local law enforcement and transportation agencies met to review crash data and discuss potential safety improvements to this segment of US 6. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this US 6 corridor and explains several selected mitigation strategies.
Resumo:
U.S. Highway 61 between Muscatine and Davenport, Iowa, is a four-lane divided section of road approximately 21 miles in length. This section was found to be among the top 5% of Iowa roadways for single-vehicle run-off-road, impaired driver, unbelted driver, and speed-related crashes for the period of 2001 through 2005. A road safety audit of this corridor was deemed appropriate by the Iowa Department of Transportation’s Office of Traffic and Safety. Staff and officials from the Iowa Department of Transportation (Iowa DOT), Iowa State Patrol, Governor’s Traffic Safety Bureau, Federal Highway Administration, Center for Transportation Research and Education, and several local law enforcement and transportation agencies met to review crash data and discuss potential safety improvements to US 61. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this US 61 corridor and explains several selected mitigation strategies.
Resumo:
On the October 7 and 8, 2008, a road safety audit was conducted for the intersection of US 61/Harrison Street and West Locust Street in Davenport, Iowa. US 61/Harrison Street is a one-way street and a principal arterial route through Davenport, with three southbound lanes. Locust Street is a four-lane, two-way minor arterial running across the city from west to east. The last major improvement at this intersection was implemented approximately 20 years ago. The Iowa Department of Transportation requested a safety audit of this intersection in response to a high incidence of crashes at the location over the past several years, in view of the fact that no major improvements are anticipated for this intersection in the immediate future. The road safety audit team discussed current conditions at the intersection and reviewed the last seven years of crash data. The team also made daytime and nighttime field visits to the intersection to examine field conditions and observe traffic flow and crossing guard operations with younger pedestrians. After discussing key issues, the road safety audit team drew conclusions and suggested possible enforcement, engineering, public information, and educational strategies for mitigation.
Resumo:
A road safety audit was conducted for a 7.75 mile section of County Road X-37 in Louisa County, Iowa. In 2006, the average annual daily traffic on this roadway was found to be 680 vehicles per day. Using crash data from 2001 to 2007, the Iowa Department of Transportation (Iowa DOT) has identified this roadway as being in the highest 5% of local rural roads in Iowa for single-vehicle runoff- road crashes. Considering these safety data, the Louisa County Engineer requested that a road safety audit be conducted to identify areas of safety concerns and recommend low-cost mitigation to address those concerns. Staff and officials from the Iowa DOT, Governor’s Traffic Safety Bureau, Federal Highway Administration, Institute for Transportation, and local law enforcement and transportation agencies met to review crash data and discuss potential safety improvements to this segment of X-37. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this X-37 corridor and explain several selected mitigation strategies.
Resumo:
A road safety audit was conducted for a seven-mile section of County Road W-55 in Washington County, Iowa. In 2006, the average annual daily traffic on this roadway was found to be 1,290 vehicles per day. Using crash data from 2001 to 2007, the Iowa Department of Transportation (Iowa DOT) has identified this roadway as being in the top 5% of Iowa secondary rural roads with the highest density of serious (fatal and major injury) crashes for single-vehicle run-off-road incidents. Considering these safety data, the Washington County Engineer requested that a road safety audit be conducted to identify areas with safety concerns and to recommend low-cost mitigation to address those concerns. Staff and officials from the Iowa DOT, Iowa State Patrol, Governor’s Traffic Safety Bureau, Federal Highway Administration, Institute for Transportation, and local law enforcement and transportation agencies met to review crash data and discuss potential safety improvements to this segment of W-55. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this W-55 corridor and explain several selected mitigation strategies.
Resumo:
Beginning on June 22, 2009, a road safety audit was initiated for the intersection of US 218 and County Road C-57 in Black Hawk County, Iowa. Due to the traffic volumes and the number of conflicting traffic movements on these two roadways, this intersection has developed a crash history that concerns the Iowa Department of Transportation (Iowa DOT), Iowa State Patrol, and local agencies. This intersection is ranked seventh in Iowa for the highest number of at-grade expressway intersection crashes. Considering this, Black Hawk County and the Iowa DOT requested that a road safety audit be conducted to address the safety concerns and recommend possible mitigation strategies.