989 resultados para METALLIC NANOPARTICLES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on conducting polymers, organic light emitting diodes and organic solar cells has been an exciting field for the past decade. The challenge with these organic devices is the long term stability of the active material. Organic materials are susceptible to chemical degradation in the presence of oxygen and moisture. The sensitivity of these materials towards oxygen and moisture makes it imperative to protect them by encapsulation. Polymer nanocomposites can be used as encapsulation materials in order to prevent material degradation. In the present work, amine functionalized alumina was used as a cross-linking and reinforcing material for the polymer matrix in order to fabricate the composites to be used for encapsulation of devices. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy were used to elucidate the surface chemistry. Thermogravimetric analysis techniques and CHN analysis were used to quantify grafting density of amine groups over the surface of the nanoparticles. Mechanical characterizations of the composites with various loadings were carried out with dynamic mechanical analyzer. It was observed that the composites have good thermal stability and mechanical flexibility, which are important for an encapsulant. The morphology of the composites was evaluated using scanning electron microscopy and atomic force microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A direct transform technique is applied to the initial and boundary value problem involving diffraction of a cylindrical pulse by a half plane, on which impedance type of boundary conditions must be met by the total field. The solution to the time harmonic incident plane wave is deduced as a particular case of the general time-dependent problem considered here and we avoid the Wiener–Hopf technique which leads to very complicated factorization and which masks the role of the impedance factor Z′ (a small quantity) in the expression for the scattered field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient algorithm within the finite deformation framework is developed for finite element implementation of a recently proposed isotropic, Mohr-Coulomb type material model, which captures the elastic-viscoplastic, pressure sensitive and plastically dilatant response of bulk metallic glasses. The constitutive equations are first reformulated and implemented using an implicit numerical integration procedure based on the backward Euler method. The resulting system of nonlinear algebraic equations is solved by the Newton-Raphson procedure. This is achieved by developing the principal space return mapping technique for the present model which involves simultaneous shearing and dilatation on multiple potential slip systems. The complete stress update algorithm is presented and the expressions for viscoplastic consistent tangent moduli are derived. The stress update scheme and the viscoplastic consistent tangent are implemented in the commercial finite element code ABAQUS/Standard. The accuracy and performance of the numerical implementation are verified by considering several benchmark examples, which includes a simulation of multiple shear bands in a 3D prismatic bar under uniaxial compression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epitaxial LaNiO3(LNO) thin films on LaAlO3(LAO), SrTiO3(STO), and YSZ are grown by pulsed laser deposition method at 350 mTorr oxygen partial pressure and 700 °C substrate temperature. As‐deposited LNO films are metallic down to 10 K. c‐axis oriented YBa2Cu3O7 (YBCO) films were grown on LNO/LAO as well as LNO/STO surfaces without affecting superconducting transition temperature of YBCO. Textured LNO thin films were grown on c‐axis oriented YBCO/STO and YBCO/YSZ . Transport measurements of these bilayer films showed that LNO is a good metallic contact material for YBCO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have synthesized Dy3+-doped ZnO nanoparticles at room temperature through the sol-gel method. X-ray diffraction and Scanning electron microscopic studies confirm the crystalline nature of the particles. Excitonic absorption of ZnO shows three different bands, and we observe that incorporation of Dy3+ results in the shifting and broadening of the n=1 absorption band of ZnO. Photoluminescence studies done at the excitation wavelength of 335 nm show broad emission containing five different bands. Open-aperture z-scan studies done at 532 nm using 5 ns laser pulses show an optical limiting behavior, which numerically fits to a three-photon type absorption process. The nonlinearity is essentially resonant, as it is found to increase consistently with Dy3+ concentration. This feature makes Dy3+-doped ZnO a flexible optical limiter for potential device applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposites of Al?In, Al?Pb, and Zn?Pb have been prepared and characterized using rapid quenching techniques and the nature of superconducting transitions in them has been studied by resistivity measurements. The precipitated second phases (In and Pb) have particle sizes (d) of a few tens of nanometers such that ?0?d?dmin, where ?0 is the superconducting zero temperature coherence length and dmin is the minimum particle size that supports superconductivity. The onset of superconductivity generally starts in samples with d??0 and progressively other grains with d??0 become superconducting. We suggest that the proximity effect of the matrix plays a significant role. In an Al?In system, even with 40?wt.% In, the zero resistivity state is obtained at T?1.33 times the Tc of Al. But in Al?Pb and Zn?Pb, the zero resistivity state is obtained at T?4 and 5 times the Tc of Al and Zn with only 10�15 wt?% Pb, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a robust strategy for obtaining a high dispersion of ultrafine Pt and PtRu nanoparticles on graphene by exploiting the nucleation of a metal precursor phase on graphite oxide surfaces. Our method opens up new possibilities to engineer graphene-based hybrids for applications in multifunctional nanoscale devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An organic-inorganic composite material is obtained by self-assembly of 2,3-didecyloxy-anthracene (DDOA), an organogelator of butanol, and organic-capped ZnO nanoparticles (NPs). The ligand 3, 2,3-di(6-oxy-n-hexanoic acid)-anthracene, designed to cap ZnO and interact with the DDOA nanofibers by structural similarity, improves the dispersion of the NPs into the organogel. The composite material displays mechanical properties similar to those of the pristine DDOA organogel, but gelates at a lower critical concentration and emits significantly less, even in the presence of very small amounts of ZnO NPs. The ligand 3 could also act as a relay to promote the photo-induced quenching process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, a closed-form analytical model for temperature-dependent longitudinal diffusive lattice thermal conductivity (kappa) of a metallic single-walled carbon nanotube (SWCNT) has been addressed. Based on the Debye theory, the second-order three-phonon Umklapp, mass difference (MD), and boundary scatterings have been incorporated to formulate. in both low-and high-temperature regimes. It is proposed that. at low temperature (T) follows the T-3 law and is independent of the second-order three-phonon Umklapp and MD scatterings. The form factor due to MD scattering also plays a key role in the significant variation of. in addition to the SWCNT length. The present diameter-independent model of. agrees well with the available experimental data on suspended intrinsic metallic SWCNTs over a wide range of temperature and can be carried forward for electrothermal analyses of CNT-based interconnects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO nanoparticles (ZnO NPs) were grown on the surface of multiwall carbon nanotubes (MWCNTs) by a wet chemical synthesis route. The anchoring of ZnO NPs on acid-treated MWCNTs was achieved under remarkably mild reaction conditions (low temperature, atmospheric pressure, without any capping agents and no need for subsequent thermal annealing). MWCNT/ZnO NPs hybrid samples with varying loading of ZnO NPs are prepared. A very high degree of dispersion of ZnO NPs over the surface of MWCNT was achieved by suitably controlling the ratio of ZnO NPs and MWCNTs in the solution. The hybrid sample was characterized by electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy (XPS). Transmission electron microscope images of the as-prepared MWCNT/ZnO NPs hybrid reveal that mono-dispersed ZnO NPs are anchored stably on functionalized MWCNTs. The interaction of ZnO NPs with MWCNT surface was interpreted through XPS analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Are evaporation of graphite with Fe, Co and Ni yields two distinct types of metal nanoparticles, wrapped in graphitic layers and highly resistant to oxidation. Electron microscopy shows that the metal particles (10-40 nm) in the stub region are encapsulated in carbon onions, the particles in the soot being considerably smaller (2-15 nm). The metal particles in the soot are either ferromagnetic with lowered Curie temperatures or superparamagnetic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver nanoparticles are being extensively studied due to their widespread applications and unique properties. In the present study, the growth kinetics of silver nanoparticles as synthesized on reduction of silver nitrate solution by aqueous extract of Azadirachta indica leaves was investigated. The formation of silver nanoparticles was preliminarily monitored by measuring the absorption maxima at different time intervals after adding the reducing agent to the silver salt solution (0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4 h). At different time points characterization studies were conducted using X-ray diffraction studies, FT-IR techniques, zeta potential studies and transmission electron microscopy. The total available silver in the reaction medium was determined at different durations using ICP-OES. The changes in reduction potential in the medium were also monitored using potentiometric analysis. The results confirm a definite change in the medium pertaining to formation of the stable nanoparticles after 2 h, and a significant increase in the agglomeration tendency after 4 h of interaction. The growth kinetic data of the nanoparticles till 3.5 h was found to fit the LSW model confirming diffusion limited growth. (C) 2011 Elsevier B.V. All rights reserved.