917 resultados para MECHANISTIC PATHWAY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cisplatin resistance remains one of the major obstacles when treating epithelial ovarian cancer. Because oxaliplatin and nedaplatin are effective against cisplatin-resistant ovarian cancer in clinical trials and signal transducer and activator of transcription 3 (STAT3) is associated with cisplatin resistance, we investigated whether overcoming cisplatin resistance by oxaliplatin and nedaplatin was associated with the STAT3 pathway in ovarian cancer. Alamar blue, clonogenic, and wound healing assays, and Western blot analysis were used to compare the effects of platinum drugs in SKOV-3 cells. At an equitoxic dose, oxaliplatin and nedaplatin exhibited similar inhibitory effects on colony-forming ability and greater inhibition on cell motility than cisplatin in ovarian cancer. Early in the time course of drug administration, cisplatin increased the expression of pSTAT3 (Tyr705), STAT3α, VEGF, survivin, and Bcl-XL, while oxaliplatin and nedaplatin exhibited the opposite effects, and upregulated pSTAT3 (Ser727) and STAT3β. The STAT3 pathway responded early to platinum drugs associated with cisplatin resistance in epithelial ovarian cancer and provided a rationale for new therapeutic strategies to reverse cisplatin resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic inflammation induced by amyloid-beta (Aβ) plays a key role in the development of age-related macular degeneration (AMD), and matrix metalloproteinase-9 (MMP-9), interleukin (IL)-6, and IL-8 may be associated with chronic inflammation in AMD. Sirtuin 1 (SIRT1) regulates inflammation via inhibition of nuclear factor-kappa B (NF-κB) signaling, and resveratrol has been reported to prevent Aβ-induced retinal degeneration; therefore, we investigated whether this action was mediated via activation of SIRT1 signaling. Human adult retinal pigment epithelial (RPE) cells were exposed to Aβ, and overactivation and knockdown of SIRT1 were performed to investigate whether SIRT1 is required for abrogating Aβ-induced inflammation. We found that Aβ-induced RPE barrier disruption and expression of IL-6, IL-8, and MMP-9 were abrogated by the SIRT1 activator SRT1720, whereas alterations induced by Aβ in SIRT1-silenced RPE cells were not attenuated by SRT1720. In addition, SRT1720 inhibited Aβ-mediated NF-κB activation and decrease of the NF-κB inhibitor, IκBα. Our findings suggest a protective role for SIRT1 signaling in Aβ-dependent retinal degeneration and inflammation in AMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ziyuglycoside II is an active compound of Sanguisorba officinalis L. that has anti-inflammation, antioxidation, antibiosis, and homeostasis properties. We report here on the anticancer effect of ziyuglycoside II on human gastric carcinoma BGC-823 cells. We investigated the effects of ziyuglycoside II on cell growth, cell cycle, and cell apoptosis of this cell line. Our results revealed that ziyuglycoside II could inhibit the proliferation of BGC-823 cells by inducing apoptosis but not cell cycle arrest, which was associated with regulation of Bax/Bcl-2 expression, and activation of the caspase-3 pathway. Our study is the first to report the antitumor potential of ziyuglycoside II in BGC-823 gastric cancer cells. Ziyuglycoside II may become a potential therapeutic agent against gastric cancer in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quercetin (Que), a plant-derived flavonoid, has multiple benefical actions on the cardiovascular system. The current study investigated whether Que postconditioning has any protective effects on myocardial ischemia/reperfusion (I/R) injury in vivo and its potential cardioprotective mechanisms. Male Sprague-Dawley rats were randomly allocated to 5 groups (20 animals/group): sham, I/R, Que postconditioning, Que+LY294002 [a phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway inhibitor], and LY294002+I/R. I/R was produced by 30-min coronary occlusion followed by 2-h reperfusion. At the end of reperfusion, myocardial infarct size and biochemical changes were compared. Apoptosis was evaluated by both TUNEL staining and measurement of activated caspase-3 immunoreactivity. The phosphorylation of Akt and protein expression of Bcl-2 and Bax were determined by Western blotting. Que postconditioning significantly reduced infarct size and serum levels of creatine kinase and lactate dehydrogenase compared with the I/R group (all P<0.05). Apoptotic cardiomyocytes and caspase-3 immunoreactivity were also suppressed in the Que postconditioning group compared with the I/R group (both P<0.05). Akt phosphorylation and Bcl-2 expression increased after Que postconditioning, but Bax expression decreased. These effects were inhibited by LY294002. The data indicate that Que postconditioning can induce cardioprotection by activating the PI3K/Akt signaling pathway and modulating the expression of Bcl-2 and Bax proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiopoietin (Ang)-1 and Ang-2 interact in angiogenesis to activate the Tie-2 receptor, which may be involved in new vessel maturation and regression. Mast cells (MCs) are also involved in formation of new blood vessels and angiogenesis. The present study was designed to test whether MCs can mediate angiogenesis in myocardial microvascular endothelial cells (MMVECs). Using a rat MMVEC and MC co-culture system, we observed that Ang-1 protein levels were very low even though its mRNA levels were increased by MCs. Interestingly, MCs were able to enhance migration, proliferation, and capillary-like tube formation, which were associated with suppressed Ang-2 protein expression, but not Tie-2 expression levels. These MCs induced effects that could be reversed by either tryptase inhibitor [N-tosyl-L-lysine chloromethyl ketone (TLCK)] or chymase inhibitor (N-tosyl-L-phenylalanyl chloromethyl ketone), with TLCK showing greater effects. In conclusion, our data indicated that MCs can interrupt neovessel maturation via suppression of the Ang-2/Tie-2 signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate the effect of propofol pretreatment on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the role of the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathway in this procedure. Survival was determined 48 h after LPS injection. At 1 h after LPS challenge, the lung wet- to dry-weight ratio was examined, and concentrations of protein, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) were determined using the bicinchoninic acid method or ELISA. Lung injury was assayed via lung histological examination. PI3K and p-Akt expression levels in the lung tissue were determined by Western blotting. Propofol pretreatment prolonged survival, decreased the concentrations of protein, TNF-α, and IL-6 in BALF, attenuated ALI, and increased PI3K and p-Akt expression in the lung tissue of LPS-challenged rats, whereas treatment with wortmannin, a PI3K/Akt pathway specific inhibitor, blunted this effect. Our study indicates that propofol pretreatment attenuated LPS-induced ALI, partly by activation of the PI3K/Akt pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the in vitro and in vivo antiproliferative activity of esculetin against hepatocellular carcinoma, and clarified its potential molecular mechanisms. Cell viability was determined by the MTT (tetrazolium) colorimetric assay. In vivoantitumor activity of esculetin was evaluated in a hepatocellular carcinoma mouse model. Seventy-five C57BL/6J mice were implanted with Hepa1-6 cells and randomized into five groups (n=15 each) given daily intraperitoneal injections of vehicle (physiological saline), esculetin (200, 400, or 700 mg·kg-1·day-1), or 5-Fu (200 mg·kg-1·day-1) for 15 days. Esculetin significantly decreased tumor growth in mice bearing Hepa1-6 cells. Tumor weight was decreased by 20.33, 40.37, and 55.42% with increasing doses of esculetin. Esculetin significantly inhibited proliferation of HCC cells in a concentration- and time-dependent manner and with an IC50 value of 2.24 mM. It blocked the cell cycle at S phase and induced apoptosis in SMMC-7721 cells with significant elevation of caspase-3 and caspase-9 activity, but did not affect caspase-8 activity. Moreover, esculetin treatment resulted in the collapse of mitochondrial membrane potential in vitro and in vivo accompanied by increased Bax expression and decreased Bcl-2 expression at both transcriptional and translational levels. Thus, esculetin exerted in vitro and in vivo antiproliferative activity in hepatocellular carcinoma, and its mechanisms involved initiation of a mitochondrial-mediated, caspase-dependent apoptosis pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have revealed that an intrinsic apoptotic signaling cascade is involved in vascular hyperpermeability and endothelial barrier dysfunction. Propofol (2,6-diisopropylphenol) has also been reported to inhibit apoptotic signaling by regulating mitochondrial permeability transition pore (mPTP) opening and caspase-3 activation. Here, we investigated whether propofol could alleviate burn serum-induced endothelial hyperpermeability through the inhibition of the intrinsic apoptotic signaling cascade. Rat lung microvascular endothelial cells (RLMVECs) were pretreated with propofol at various concentrations, followed by stimulation with burn serum, obtained from burn-injury rats. Monolayer permeability was determined by transendothelial electrical resistance. Mitochondrial release of cytochrome C was measured by ELISA. Bax and Bcl-2 expression and mitochondrial release of second mitochondrial-derived activator of caspases (smac) were detected by Western blotting. Caspase-3 activity was assessed by fluorometric assay; mitochondrial membrane potential (Δψm) was determined with JC-1 (a potential-sensitive fluorescent dye). Intracellular ATP content was assayed using a commercial kit, and reactive oxygen species (ROS) were measured by dichlorodihydrofluorescein diacetate (DCFH-DA). Burn serum significantly increased monolayer permeability (P<0.05), and this effect could be inhibited by propofol (P<0.05). Compared with a sham treatment group, intrinsic apoptotic signaling activation - indicated by Bax overexpression, Bcl-2 downregulation, Δψm reduction, decreased intracellular ATP level, increased cytosolic cytochrome C and smac, and caspase-3 activation - was observed in the vehicle group. Propofol not only attenuated these alterations (P<0.05 for all), but also significantly decreased burn-induced ROS production (P<0.05). Propofol attenuated burn-induced RLMVEC monolayer hyperpermeability by regulating the intrinsic apoptotic signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated the effect of silibinin, the principal potential anti-inflammatory flavonoid contained in silymarin, a mixture of flavonolignans extracted from Silybum marianum seeds, on palmitate-induced insulin resistance in C2C12 myotubes and its potential molecular mechanisms. Silibinin prevented the decrease of insulin-stimulated 2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose) uptake and the downregulation of glutamate transporter type 4 (GLUT4) translocation in C2C12 myotubes induced by palmitate. Meanwhile, silibinin suppressed the palmitate-induced decrease of insulin-stimulated Akt Ser473 phosphorylation, which was reversed by wortmannin, a specific inhibitor of phosphatidylinositol-3-kinase (PI3K). We also found that palmitate downregulated insulin-stimulated Tyr632 phosphorylation of insulin receptor substrate 1 (IRS-1) and up-regulated IRS-1 Ser307 phosphorylation. These effects were rebalanced by silibinin. Considering several serine/threonine kinases reported to phosphorylate IRS-1 at Ser307, treatment with silibinin downregulated the phosphorylation of both c-Jun N-terminal kinase (JNK) and nuclear factor-κB kinase β (IKKβ), which was increased by palmitate in C2C12 myotubes mediating inflammatory status, whereas the phosphorylation of PKC-θ was not significantly modulated by silibinin. Collectively, the results indicated that silibinin prevented inhibition of the IRS-1/PI3K/Akt pathway, thus ameliorating palmitate-induced insulin resistance in C2C12 myotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T4endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T4endonuclease V. Low-intensity lasers:i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells,ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, andiv) did not alter the electrophoretic profile of plasmids incubated with T4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ovarian cancer is one of the most common causes of death from gynecologic tumors and is an important public health issue. Ghrelin is a recently discovered bioactive peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR). Several studies have identified the protective effects of ghrelin on the mammalian reproductive system. However, little research has been done on the effects of ghrelin on ovarian cancer cells, and the underlying mechanisms of these effects. We sought to understand the potential involvement of mitogen-activated protein kinases (MAPKs) in ghrelin-mediated inhibition of growth of the ovarian line HO-8910. We applied different concentrations of ghrelin and an inhibitor of the ghrelin receptor (D-Lys3-GHRP-6) to HO-8910 cells and observed the growth rate of cells and changes in phosphorylation of the MAPKs ERK1/2, JNK and p38. We discovered that ghrelin-induced apoptosis of HO-8910 cells was though phosphorylated ERK1/2, and that this phosphorylation (as well as p90rsk phosphorylation) was mediated by the GHSR. The ERK1/2 pathway is known to play an essential part in the ghrelin-mediated apoptosis of HO-8910 cells. Hence, our study suggests that ghrelin inhibits the growth of HO-8910 cells primarily through the GHSR/ERK pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heme oxygenase-carbon monoxide pathway has been shown to play an important role in many physiological processes and is capable of altering nociception modulation in the nervous system by stimulating soluble guanylate cyclase (sGC). In the central nervous system, the locus coeruleus (LC) is known to be a region that expresses the heme oxygenase enzyme (HO), which catalyzes the metabolism of heme to carbon monoxide (CO). Additionally, several lines of evidence have suggested that the LC can be involved in the modulation of emotional states such as fear and anxiety. The purpose of this investigation was to evaluate the activation of the heme oxygenase-carbon monoxide pathway in the LC in the modulation of anxiety by using the elevated plus maze test (EPM) and light-dark box test (LDB) in rats. Experiments were performed on adult male Wistar rats weighing 250-300 g (n=182). The results showed that the intra-LC microinjection of heme-lysinate (600 nmol), a substrate for the enzyme HO, increased the number of entries into the open arms and the percentage of time spent in open arms in the elevated plus maze test, indicating a decrease in anxiety. Additionally, in the LDB test, intra-LC administration of heme-lysinate promoted an increase on time spent in the light compartment of the box. The intracerebroventricular microinjection of guanylate cyclase, an sGC inhibitor followed by the intra-LC microinjection of the heme-lysinate blocked the anxiolytic-like reaction on the EPM test and LDB test. It can therefore be concluded that CO in the LC produced by the HO pathway and acting via cGMP plays an anxiolytic-like role in the LC of rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphoserine aminotrasferase (PSAT: EC 2.6.1.52) is a vitamin B6-dependent enzyme and a member of the subgroup IV in the aminotransferase superfamily. Here, X-ray crystallography was used to determine the structure of PSAT from Bacillus alcalophilus with pyridoxamine 5′-phosphate (PMP) at high resolution (1.57 Å). In addition, analysis of active residues and their conformational changes was performed. The structure is of good quality as indicated, for example, by the last recorded Rwork and Rfree numbers (0.1331 and 0.1495, respectively). The enzyme was initially crystallized in the presence of substrate L-glutamate with the idea to produce the enzyme-substrate complex. However, the structure determination revealed no glutamate bound at the active site. Instead, the Schiff base between Lys196 and PLP appeared broken, resulting in the formation of PMP owing to the excess of the donor substrate used during co-crystallization. Structural comparison with the free PSAT enzyme and the PSAR-PSER complex showed that the aromatic ring of the co-factor remains in almost the same place in all structures. A flexible nearby loop in the active site was found in the same position as in the free PSAT structure while in the PSAT-PSER structure it moves inwards to interact with PSER. B-factors comparison in all three structures (PSAT-PMP complex, free PSAT, and PSAT-PSER complex) showed elevated loop flexibility in the absence of the substrate, indicating that loop flexibility plays an important role during substrate binding. The reported structure provides mechanistic details into the reaction mechanism of PSAT and may help in understanding better the role of various parts in the structure towards the design of novel compounds as potential disruptors of PSAT function. This may lead to the development of new drugs which could target the human and bacterial PSAT active site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer affects more than 20 million people each year and this rate is increasing globally. The Ras/MAPK-pathway is one of the best-studied cancer signaling pathways. Ras proteins are mutated in almost 20% of all human cancers and despite numerous efforts, no effective therapy that specifically targets Ras is available to date. It is now well established that Ras proteins laterally segregate on the plasma membrane into transient nanoscale signaling complexes called nanoclusters. These Ras nanoclusters are essential for the high-fidelity signal transmission. Disruption of nanoclustering leads to reduction in Ras activity and signaling, therefore targeting nanoclusters opens up important new therapeutic possibilities in cancer. This work describes three different studies exploring the idea of membrane protein nanoclusters as novel anti-cancer drug targets. It is focused on the design and implementation of a simple, cell-based Förster Resonance Energy Transfer (FRET)-biosensor screening platform to identify compounds that affect Ras membrane organization and nanoclustering. Chemical libraries from different sources were tested and a number of potential hit molecules were validated on full-length oncogenic proteins using a combination of imaging, biochemical and transformation assays. In the first study, a small chemical library was screened using H-ras derived FRET-biosensors. Surprisingly from this screen, commonly used protein synthesis inhibitors (PSIs) were found to specifically increase H-ras nanoclustering and downstream signalling in a H-ras dependent manner. Using a representative PSI, increase in H-ras activity was shown to induce cancer stem cell (CSC)-enriched mammosphere formation and tumor growth of breast cancer cells. Moreover, PSIs do not increase K-ras nanoclustering, making this screening approach suitable for identifying Ras isoform-specific inhibitors. In the second study, a nanoncluster-directed screen using both H- and K-ras derived FRET biosensors identified CSC inhibitor salinomycin to specifically inhibit K-ras nanocluster organization and downstream signaling. A K-ras nanoclusteringassociated gene signature was established that predicts the drug sensitivity of cancer cells to CSC inhibitors. Interestingly, almost 8% of patient tumor samples in the The Cancer Genome Atlas (TCGA) database had the above gene signature and were associated with a significantly higher mortality. From this mechanistic insight, an additional microbial metabolite screen on H- and K-ras biosensors identified ophiobolin A and conglobatin A to specifically affect K-ras nanoclustering and to act as potential breast CSC inhibitors. In the third study, the Ras FRET-biosensor principle was used to investigate membrane anchorage and nanoclustering of myristoylated proteins such as heterotrimeric G-proteins, Yes- and Src-kinases. Furthermore, Yes-biosensor was validated to be a suitable platform for performing chemical and genetic screens to identify myristoylation inhibitors. The results of this thesis demonstrate the potential of the Ras-derived FRETbiosensor platform to differentiate and identify Ras-isoform specfic inhibitors. The results also highlight that most of the inhibitors identified predominantly perturb Ras subcellular distribution and membrane organization through some novel and yet unknown mechanisms. The results give new insights into the role of Ras nanoclusters as promising new molecular targets in cancer and in stem cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoporous metal oxides are nowadays widely used in various technological applications, for instance in catalysis, biomolecular separations and drug delivery. A popular technique used to synthesize mesoporous metal oxides is the nanocasting process. Mesoporous metal oxide replicas are obtained from the impregnation of a porous template with a metal oxide precursor followed by thermal treatment and removal of the template by etching in NaOH or HF solutions. In a similar manner to the traditional casting wherein the product inherits the features of the mold, the metal oxide replicas are supposed to have an inverse structure of the starting porous template. This is however not the case, as broken or deformed particles and other structural defects have all been experienced during nanocasting experiments. Although the nanocasting technique is widely used, not all the processing steps are well understood. Questions over the fidelity of replication and morphology control are yet to be adequately answered. This work therefore attempts to answer some of these questions by elucidating the nanocasting process, pin pointing the crucial steps involved and how to harness this knowledge in making wholesome replicas which are a true replication of the starting templates. The rich surface chemistry of mesoporous metal oxides is an important reason why they are widely used in applications such as catalysis, biomolecular separation, etc. At times the surface is modified or functionalized with organic species for stability or for a particular application. In this work, nanocast metal oxides (TiO2, ZrO2 and SnO2) and SiO2 were modified with amino-containing molecules using four different approaches, namely (a) covalent bonding of 3-aminopropyltriethoxysilane (APTES), (b) adsorption of 2-aminoethyl dihydrogen phosphate (AEDP), (c) surface polymerization of aziridine and (d) adsorption of poly(ethylenimine) (PEI) through electrostatic interactions. Afterwards, the hydrolytic stability of each functionalization was investigated at pH 2 and 10 by zeta potential measurements. The modifications were successful except for the AEDP approach which was unable to produce efficient amino-modification on any of the metal oxides used. The APTES, aziridine and PEI amino-modifications were fairly stable at pH 10 for all the metal oxides tested while only AZ and PEI modified-SnO2 were stable at pH 2 after 40 h. Furthermore, the functionalized metal oxides (SiO2, Mn2O3, ZrO2 and SnO2) were packed into columns for capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Among the functionalized metal oxides, aziridinefunctionalized SiO2, (SiO2-AZ) showed good chemical stability, and was the most useful packing material in both CLC and CEC. Lastly, nanocast metal oxides were synthesized for phosphopeptide enrichment which is a technique used to enrich phosphorylated proteins in biological samples prior to mass spectrometry analysis. By using the nanocasting technique to prepare the metal oxides, the surface area was controlled within a range of 42-75 m2/g thereby enabling an objective comparison of the metal oxides. The binding characteristics of these metal oxides were compared by using samples with different levels of complexity such as synthetic peptides and cell lysates. The results show that nanocast TiO2, ZrO2, Fe2O3 and In2O3 have comparable binding characteristics. Furthermore, In2O3 which is a novel material in phosphopeptide enrichment applications performed comparably with standard TiO2 which is the benchmark for such phosphopeptide enrichment procedures. The performance of the metal oxides was explained by ranking the metal oxides according to their isoelectric points and acidity. Overall, the clarification of the nanocasting process provided in this work will aid the synthesis of metal oxides with true fidelity of replication. Also, the different applications of the metal oxides based on their surface interactions and binding characteristics show the versatility of metal oxide materials. Some of these results can form the basis from which further applications and protocols can be developed.