555 resultados para Lymphoid neogenesis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole–imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located within RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The puzzling linkage between genetic hemochromatosis and histocompatibility loci became even more so when the gene involved, HFE, was identified. Indeed, within the well defined, mainly peptide-binding, MHC class I family of molecules, HFE seems to perform an unusual yet essential function. As yet, our understanding of HFE function in iron homeostasis is only partial; an even more open question is its possible role in the immune system. To advance on both of these avenues, we report the deletion of HFE α1 and α2 putative ligand binding domains in vivo. HFE-deficient animals were analyzed for a comprehensive set of metabolic and immune parameters. Faithfully mimicking human hemochromatosis, mice homozygous for this deletion develop iron overload, characterized by a higher plasma iron content and a raised transferrin saturation as well as an elevated hepatic iron load. The primary defect could, indeed, be traced to an augmented duodenal iron absorption. In parallel, measurement of the gut mucosal iron content as well as iron regulatory proteins allows a more informed evaluation of various hypotheses regarding the precise role of HFE in iron homeostasis. Finally, an extensive phenotyping of primary and secondary lymphoid organs including the gut provides no compelling evidence for an obvious immune-linked function for HFE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early in ontogeny, the secondary lymphoid organs become populated with numerous cells of mesodermal origin which forms both the lymphoid and stromal elements. The critical receptor/ligand interactions necessary for lymphoid organogenesis to occur are for the most part unknown. Although lymphotoxin-α (LTα) has been shown to be required for normal lymph node, Peyer’s patch, and splenic development, it is unclear if soluble LTα3, and/or cell-bound lymphotoxin-αβ (LTαβ) mediate these developmental events. Here we report that blocking LTαβ/lymphotoxin-β receptor (LTβR) interaction in vivo by generating mice which express a soluble LTβR–Fc fusion protein driven by the human cytomegalovirus promoter results in an array of anatomic abnormalities affecting both the spleen and Peyer’s patches, but not the lymph nodes. These results demonstrate that surface LTαβ ligand plays a critical role in normal lymphoid organ development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The protooncogene c-abl encodes a nonreceptor tyrosine kinase whose cellular function is unknown. To study the possible involvement of c-Abl in proliferation, differentiation, and cell cycle regulation of early B cells, long-term lymphoid bone marrow cultures were established from c-abl-deficient mice and their wild-type littermates. Interleukin 7-dependent progenitor B-cell clones and lines expressing B220 and CD43 could be generated from both mutant and wild-type mice. The mutant and wild-type lines displayed no difference in their proliferative capacity as measured by thymidine incorporation in response to various concentrations of interleukin 7. Similarly, c-abl deficiency did not interfere with the ability of mutant clones to differentiate into surface IgM-positive cells in vitro. Analysis of cultures after growth factor deprivation, however, revealed a strikingly accelerated rate of cell death in c-abl mutant cells, due to apoptosis as confirmed by terminal deoxynucleotidyltransferase-mediated UTP nick end labeling analysis. Furthermore, a greater susceptibility to apoptotic cell death in c-abl mutant cells was also observed after glucocorticoid treatment. These results suggest that mutant c-Abl renders the B-cell progenitors more sensitive to apoptosis, and may account for some of the phenotypes observed in c-abl-deficient animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LEF-1 (lymphoid enhancer-binding factor 1) is a cell type-specific member of the family of high mobility group (HMG) domain proteins that recognizes a specific nucleotide sequence in the T cell receptor (TCR) α enhancer. In this study, we extend the analysis of the DNA-binding properties of LEF-1 and examine their contributions to the regulation of gene expression. We find that LEF-1, like nonspecific HMG-domain proteins, can interact with irregular DNA structures such as four-way junctions, albeit with lower efficiency than with specific duplex DNA. We also show by a phasing analysis that the LEF-induced DNA bend is directed toward the major groove. In addition, we find that the interaction of LEF-1 with a specific binding site in circular DNA changes the linking number of DNA and unwinds the double helix. Finally, we identified two nucleotides in the LEF-1-binding site that are important for protein-induced DNA bending. Mutations of these nucleotides decrease both the extent of DNA bending and the transactivation of the TCRα enhancer by LEF-1, suggesting a contribution of protein-induced DNA bending to the function of TCRα enhancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymorphonuclear leukocytes are essential for host defense to infectious diseases. CCAAT/enhancer binding protein ɛ (C/EBPɛ) is preferentially expressed in granulocytes and lymphoid cells. Mice with a null mutation in C/EBPɛ develop normally and are fertile but fail to generate functional neutrophils and eosinophils. Opportunistic infections and tissue destruction lead to death by 3–5 months of age. Furthermore, end-stage mice develop myelodysplasia, characterized by proliferation of atypical granulocytes that efface the bone marrow and result in severe tissue destruction. Thus, C/EBPɛ is essential for terminal differentiation and functional maturation of committed granulocyte progenitor cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TCL1 and TCL1b genes on human chromosome 14q23.1 are activated in T cell leukemias by translocations and inversions at 14q32.1, juxtaposing them to regulatory elements of T cell receptor genes. In this report we present the cloning, mapping, and expression analysis of the human and murine TCL1/Tcl1 locus. In addition to TCL1 and TCL1b, the human locus contains two additional genes, TCL1-neighboring genes (TNG) 1 and 2, encoding proteins of 141 and 110 aa, respectively. Both genes show no homology to any known genes, but their expression profiles are very similar to those of TCL1 and TCL1b. TNG1 and TNG2 also are activated in T cell leukemias with rearrangements at 14q32.1. To aid in the development of a mouse model we also have characterized the murine Tcl1 locus and found five genes homologous to human TCL1b. Tcl1b1–Tcl1b5 proteins range from 117 to 123 aa and are 65–80% similar, but they show only a 30–40% similarity to human TCL1b. All five mouse Tcl1b and murine Tcl1 mRNAs are abundant in mouse oocytes and two-cell embryos but rare in various adult tissues and lymphoid cell lines. These data suggest a similar or complementary function of these proteins in early embryogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sepsis induces extensive lymphocyte apoptosis, a process which may be beneficial to host survival by down-regulating the inflammatory response or, alternatively, harmful by impairing host defenses. To determine the beneficial vs. adverse effects of lymphocyte apoptosis in sepsis, we blocked lymphocyte apoptosis either by N-benzyloxycarbonyl-Val-Ala-Asp(O-methyl) fluoromethyl ketone (z-VAD), a broad-spectrum caspase inhibitor, or by use of Bcl-2 Ig transgenic mice that selectively overexpress the antiapoptotic protein Bcl-2 in a lymphoid pattern. Both z-VAD and Bcl-2 prevented lymphocyte apoptosis and resulted in a marked improvement in survival. z-VAD did not decrease lymphocyte tumor necrosis factor-α production. Considered together, these two studies employing different methods of blocking lymphocyte apoptosis provide compelling evidence that immunodepression resulting from the loss of lymphocytes is a central pathogenic event in sepsis, and they challenge the current paradigm that regards sepsis as a disorder resulting from an uncontrolled inflammatory response. Caspase inhibitors may represent a treatment strategy in this highly lethal disorder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purification of primitive human hematopoietic stem cells has been impaired by the absence of repopulation assays. By using a stringent two-step strategy involving depletion of lineage-positive cells followed by fluorescence-activated cell sorting, we have purified a cell population that is highly enriched for cells capable of multilineage repopulation in nonobese diabetic/severe combined immunodeficient (NOD/SCID) recipients. These SCID-repopulating cells (SRCs) were exclusively found in a cell fraction that expressed high levels of CD34 and no CD38. Through limiting dilution analysis using Poisson statistics, we calculated a frequency of 1 SRC in 617 CD34+ CD38− cells. The highly purified SRC were capable of extensive proliferation in NOD/SCID mice. Mice transplanted with 1 SRC (at limiting cell doses) were able to produce approximately 400,000 progeny 6 weeks after the transplant. Detailed flow cytometric analysis of the marrow of highly engrafted mice demonstrated both lymphoid and myeloid differentiation, as well as the retention of a significant fraction of CD34+ CD38− cells. These highly purified fractions should be useful for identification of the cellular and molecular mechanisms that regulate primitive human hematopoietic cells. Moreover, the ability to detect and purify primitive cells provides a means to develop conditions for maintaining and/or expanding these cells during in vitro culture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bcl-2, which can both reduce apoptosis and retard cell cycle entry, is thought to have important roles in hematopoiesis. To evaluate the impact of its ubiquitous overexpression within this system, we targeted expression of the human bcl-2 gene in mice by using the promoter of the vav gene, which is active throughout this compartment but rarely outside it. The vav-bcl-2 transgene was expressed in essentially all nucleated cells of hematopoietic tissues but not notably in nonhematopoietic tissues. Presumably because of enhanced cell survival, the mice displayed increases in myeloid cells as well as a marked elevation in B and T lymphocytes. The spleen was enlarged and the lymphoid follicles expanded. Although total thymic cellularity was normal, T cell development was altered: cells at the very immature and most mature stages were increased, whereas those at the intermediate stage were decreased. Unexpectedly, blood platelets were reduced by half, suggesting that their production from megakaryocytes is regulated by the Bcl-2 family. Colony formation by myeloid progenitor cells in vitro remained cytokine dependent, and the frequency of most progenitor and preprogenitor cells was normal. Macrophage progenitors were less frequent and yielded smaller colonies, however, perhaps reflecting inhibitory effects of Bcl-2 on cell cycling in specific lineages. After irradiation or factor deprivation, Bcl-2 markedly enhanced clonogenic survival of all tested progenitor and preprogenitor cells. Thus, Bcl-2 has multiple effects on the hematopoietic system. These mice should help to further clarify the role of apoptosis in the development and homeostasis of this compartment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P75/AIRM1 is a recently identified surface molecule that belongs to the sialoadhesin family and displays homology with the myeloid cell antigen CD33. In lymphoid cells, p75/AIRM1 is confined to natural killer cells and mediates inhibition of their cytolytic activity. In this study, we show that p75/AIRM1 is also expressed by cells of the myelomonocytic cell lineage, in which it appears at a later stage as compared with CD33. In vitro proliferation and differentiation of cord blood-derived CD34+ cells (induced by stem cell factor and granulocyte–macrophage colony-stimulating factor) were consistently inhibited by the addition of anti-p75/AIRM1 mAb. Engagement of CD33 led to inhibition in some experiments. A sharp decrease of cell proliferation/survival was detected in all three p75/AIRM1+ chronic myeloid leukemias analyzed when cultured in the presence of either anti-p75/AIRM1 or anti-CD33 mAbs. Thus, the present study suggests that p75/AIRM1 and CD33 may play a regulatory role in normal myelopoiesis and may be viewed as suitable target molecules to counteract the proliferation/survival of chronic myeloid leukemias.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

X-linked lymphoproliferative syndrome (XLP) is an inherited immunodeficiency characterized by increased susceptibility to Epstein–Barr virus (EBV). In affected males, primary EBV infection leads to the uncontrolled proliferation of virus-containing B cells and reactive cytotoxic T cells, often culminating in the development of high-grade lymphoma. The XLP gene has been mapped to chromosome band Xq25 through linkage analysis and the discovery of patients harboring large constitutional genomic deletions. We describe here the presence of small deletions and intragenic mutations that specifically disrupt a gene named DSHP in 6 of 10 unrelated patients with XLP. This gene encodes a predicted protein of 128 amino acids composing a single SH2 domain with extensive homology to the SH2 domain of SHIP, an inositol polyphosphate 5-phosphatase that functions as a negative regulator of lymphocyte activation. DSHP is expressed in transformed T cell lines and is induced following in vitro activation of peripheral blood T lymphocytes. Expression of DSHP is restricted in vivo to lymphoid tissues, and RNA in situ hybridization demonstrates DSHP expression in activated T and B cell regions of reactive lymph nodes and in both T and B cell neoplasms. These observations confirm the identity of DSHP as the gene responsible for XLP, and suggest a role in the regulation of lymphocyte activation and proliferation. Induction of DSHP may sustain the immune response by interfering with SHIP-mediated inhibition of lymphocyte activation, while its inactivation in XLP patients results in a selective immunodeficiency to EBV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissection of the primary and secondary response to an influenza A virus established that the liver contains a substantial population of CD8+ T cells specific for the immunodominant epitope formed by H-2Db and the influenza virus nucleoprotein peptide fragment NP366–374 (DbNP366). The numbers of CD8+ DbNP366+ cells in the liver reflected the magnitude of the inflammatory process in the pneumonic lung, though replication of this influenza virus is limited to the respiratory tract. Analysis of surface phenotypes indicated that the liver CD8+ DbNP366+ cells tended to be more “activated” than the set recovered from lymphoid tissue but generally less so than those from the lung. The distinguishing characteristic of the lymphocytes from the liver was that the prevalence of the CD8+ DbNP366+ set was always much higher than the percentage of CD8+ T cells that could be induced to synthesize interferon γ after short-term, in vitro stimulation with the NP366–374 peptide, whereas these values were generally comparable for virus-specific CD8+ T cells recovered from other tissue sites. Also, the numbers of apoptotic CD8+ T cells were higher in the liver. The results overall are consistent with the idea that antigen-specific CD8+ T cells are destroyed in the liver during the control and resolution phases of this viral infection, though this destruction is not necessarily an immediate process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HOX11, a divergent homeodomain-containing transcription factor, was isolated from the breakpoint of the nonrandom t(10;14)(q24;q11) chromosome translocation found in human T cell acute lymphoblastic leukemias. The translocation places the HOX11 coding sequence under the transcriptional control of TCR α/δ regulatory elements, resulting in ectopic expression of a normal HOX11 protein in thymocytes. To investigate the oncogenic potential of HOX11, we targeted its expression in lymphocytes of transgenic mice by placing the human cellular DNA under the transcriptional control of Ig heavy chain or LCK regulatory sequences. Only IgHμ-HOX11 mice expressing low levels of HOX11 were viable. During their second year of life, all HOX11 transgenic mice became terminally ill with more than 75% developing large cell lymphomas in the spleen, which frequently disseminated to thymus, lymph nodes, and other nonhematopoietic tissues. Lymphoma cells were predominantly clonal IgM+IgD+ mature B cells. Repopulation of severe combined immunodeficient mice with cells from hyperplastic spleens indicated that the HOX11 tumor phenotype was transplantable. Before tumor development, expression of the transgene did not result in perturbations in lymphopoiesis; however, lymphoid hyperplasia involving the splenic marginal zones was present in 20% of spleens. Our studies provide direct evidence that expression of HOX11 in lymphocytes leads to malignant transformation. These mice are a useful model system to study mechanisms involved in transformation from B-lineage hyperplasia to malignant lymphoma and for testing novel approaches to therapy. They represent a novel animal model for non-Hodgkin’s lymphoma of peripheral mature B cell origin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human herpesvirus 6 (HHV-6) like other herpesviruses, expresses sequentially immediate early (IE), early, and late genes during lytic infection. Evidence of ability to establish latent infection has not been available, but by analogy with other herpesviruses it could be expected that IE genes that regulate and transactivate late genes would not be expressed. We report that peripheral blood mononuclear cells of healthy individuals infected with HHV-6 express the U94 gene, transcribed under IE conditions. Transcription of other IE genes (U16/17, U39, U42, U81, U89/90, U91) was not detected. To verify that U94 may play a role in the maintenance of the latent state, we derived lymphoid cell lines that stably expressed U94. HHV-6 was able to infect these cells, but viral replication was restricted. No cytopathic effect developed. Furthermore, viral transcripts were present in the first days postinfection and declined thereafter. A similar decline in the level of intracellular viral DNA also was observed. These findings are consistent with the hypothesis that the U94 gene product of HHV-6 regulates viral gene expression and enables the establishment and/or maintenance of latent infection in lymphoid cells.