829 resultados para Low-Carbon Steels
Resumo:
In spite of the normally low content of organic matter found in sandy soils, it is responsible for almost the totality of cation exchange capacity (CEC), water storage and availability of plant nutrients. It is therefore important to evaluate the impact of alternative forest exploitation on the improvement of soil C and N accumulation on these soils. This study compared pure and mixed plantations of Eucalyptus grandis and Pseudosamanea guachapele, a N2-fixing leguminous tree, in relation to their effects on soil C and N stocks. The studied Planosol area had formerly been covered by Panicum maximum pasture for at least ten years without any fertilizer addition. To estimate C and N contents, the soil was sampled (at depths of 0-2.5; 2.5-5.0; 5.0-7.5; 7.5-10.0; 10.0-20.0 and 20.0-40.0 cm), in pure and mixed five-year-old tree plantations, as well as on adjacent pasture. The natural abundance 13C technique was used to estimate the contribution of the soil organic C originated from the trees in the 0-10 cm soil layer. Soil C and N stocks under mixed plantation were 23.83 and 1.74 Mg ha-1, respectively. Under guachapele, eucalyptus and pasture areas C stocks were 14.20, 17.19 and 24.24 Mg ha-1, respectively. For these same treatments, total N contents were 0.83; 0.99 and 1.71 Mg ha-1, respectively. Up to 40 % of the soil organic C in the mixed plantation was estimated to be derived from trees, while in pure eucalyptus and guachapele plantations these same estimates were only 19 and 27 %, respectively. Our results revealed the benefits of intercropped leguminous trees in eucalyptus plantations on soil C and N stocks.
Resumo:
The use of green manure may contribute to reduce soil erosion and increase the soil organic matter content and N availability in coffee plantations in the Zona da Mata, State of Minas Gerais, in Southeastern Brazil. The potential of four legumes (A. pintoi, C. mucunoides, S. aterrimum and S. guianensis) to produce above-ground biomass, accumulate nutrients and mineralize N was studied in two coffee plantations of subsistence farmers under different climate conditions. The biomass production of C. mucunoides was influenced by the shade of the coffee plantation. C. mucunoides tended to mineralize more N than the other legumes due to the low polyphenol content and polyphenol/N ratio. In the first year, the crop establishment of A. pintoi in the area took longer than of the other legumes, resulting in lower biomass production and N2 fixation. In the long term, cellulose was the main factor controlling N mineralization. The biochemical characteristics, nutrient accumulation and biomass production of the legumes were greatly influenced by the altitude and position of the area relative to the sun.
Resumo:
Introduction: Carbon monoxide (CO) poisoning is one of the mostcommon causes of fatal poisoning. Symptoms of CO poisoning arenonspecific and the documentation of elevated carboxyhemoglobin(HbCO) levels in arterial blood sample is the only standard ofconfirming suspected exposure. The treatment of CO poisoning requiresnormobaric or hyperbaric oxygen therapy, according to the symptomsand HbCO levels. A new device, the Rad-57 pulse CO-oximeter allowsnoninvasive transcutaneous measurement of blood carboxyhemoglobinlevel (SpCO) by measurement of light wavelength absorptions.Methods: Prospective cohort study with a sample of patients, admittedbetween October 2008 - March 2009 and October 2009 - March 2010,in the emergency services (ES) of a Swiss regional hospital and aSwiss university hospital (Burn Center). In case of suspected COpoisoning, three successive noninvasive measurements wereperformed, simultaneously with one arterial blood HbCO test. A controlgroup includes patients admitted in the ES for other complaints (cardiacinsufficiency, respiratory distress, acute renal failure), but necessitatingarterial blood testing. Informed consent was obtained from all patients.The primary endpoint was to assess the agreement of themeasurements made by the Rad-57 (SpCO) and the blood levels(HbCO).Results: 50 patients were enrolled, among whom 32 were admittedfor suspected CO poisoning. Baseline demographic and clinicalcharacteristics of patients are presented in table 1. The median age was37.7 ans ± 11.8, 56% being male. Median laboratory carboxyhemoglobinlevels (HbCO) were 4.25% (95% IC 0.6-28.5) for intoxicated patientsand 1.8% (95% IC 1.0-5.3) for control patients. Only five patientspresented with HbCO levels >= 15%. The results disclose relatively faircorrelations between the SpCO levels obtained by the Rad-57 and thestandard HbCO, without any false negative results. However, theRad-57 tend to under-estimate the value of SpCO for patientsintoxicated HbCO levels >10% (fig. 1).Conclusion: Noninvasive transcutaneous measurement of bloodcarboxyhemoglobin level is easy to use. The correlation seems to becorrect for low to moderate levels (<15%). For higher values, weobserve a trend of the Rad-57 to under-estimate the HbCO levels. Apartfrom this potential limitation and a few cases of false-negative resultsdescribed in the literature, the Rad-57 may be useful for initial triageand diagnosis of CO.
Resumo:
Agricultural soils can act as a source or sink of atmospheric C, according to the soil management. This long-term experiment (22 years) was evaluated during 30 days in autumn, to quantify the effect of tillage systems (conventional tillage-CT and no-till-NT) on the soil CO2-C flux in a Rhodic Hapludox in Rio Grande do Sul State, Southern Brazil. A closed-dynamic system (Flux Chamber 6400-09, Licor) and a static system (alkali absorption) were used to measure soil CO2-C flux immediately after soybean harvest. Soil temperature and soil moisture were measured simultaneously with CO2-C flux, by Licor-6400 soil temperature probe and manual TDR, respectively. During the entire month, a CO2-C emission of less than 30 % of the C input through soybean crop residues was estimated. In the mean of a 30 day period, the CO2-C flux in NT soil was similar to CT, independent of the chamber type used for measurements. Differences in tillage systems with dynamic chamber were verified only in short term (daily evaluation), where NT had higher CO2-C flux than CT at the beginning of the evaluation period and lower flux at the end. The dynamic chamber was more efficient than the static chamber in capturing variations in CO2-C flux as a function of abiotic factors. In this chamber, the soil temperature and the water-filled pore space (WFPS), in the NT soil, explained 83 and 62 % of CO2-C flux, respectively. The Q10 factor, which evaluates CO2-C flux dependence on soil temperature, was estimated as 3.93, suggesting a high sensitivity of the biological activity to changes in soil temperature during fall season. The CO2-C flux measured in a closed dynamic chamber was correlated with the static alkali adsorption chamber only in the NT system, although the values were underestimated in comparison to the other, particularly in the case of high flux values. At low soil temperature and WFPS conditions, soil tillage caused a limited increase in soil CO2-C flux.
Resumo:
Soil organic matter (SOM) plays an important role in carbon (C) cycle and soil quality. Considering the complexity of factors that control SOM cycling and the long time it usually takes to observe changes in SOM stocks, modeling constitutes a very important tool to understand SOM cycling in forest soils. The following hypotheses were tested: (i) soil organic carbon (SOC) stocks would be higher after several rotations of eucalyptus than in low-productivity pastures; (ii) SOC values simulated by the Century model would describe the data better than the mean of observations. So, the aims of the current study were: (i) to evaluate the SOM dynamics using the Century model to simulate the changes of C stocks for two eucalyptus chronosequences in the Rio Doce Valley, Minas Gerais State, Brazil; and (ii) to compare the C stocks simulated by Century with the C stocks measured in soils of different Orders and regions of the Rio Doce Valley growing eucalyptus. In Belo Oriente (BO), short-rotation eucalyptus plantations had been cultivated for 4.0; 13.0, 22.0, 32.0 and 34.0 years, at a lower elevation and in a warmer climate, while in Virginópolis (VG), these time periods were 8.0, 19.0 and 33.0 years, at a higher elevation and in a milder climate. Soil samples were collected from the 0-20 cm layer to estimate C stocks. Results indicate that the C stocks simulated by the Century model decreased after 37 years of poorly managed pastures in areas previously covered by native forest in the regions of BO and VG. The substitution of poorly managed pastures by eucalyptus in the early 1970´s led to an average increase of C of 0.28 and 0.42 t ha-1 year-1 in BO and VG, respectively. The measured C stocks under eucalyptus in distinct soil Orders and independent regions with variable edapho-climate conditions were not far from the values estimated by the Century model (root mean square error - RMSE = 20.9; model efficiency - EF = 0.29) despite the opposite result obtained with the statistical procedure to test the identity of analytical methods. Only for lower soil C stocks, the model over-estimated the C stock in the 0-20 cm layer. Thus, the Century model is highly promising to detect changes in C stocks in distinct soil orders under eucalyptus, as well as to indicate the impact of harvest residue management on SOM in future rotations.
Resumo:
The impact of pig slurry and poultry litter fertilization on soils depends on the conditions of use and the amounts applied. This study evaluated the effect of organic fertilizers after different application periods in different areas on the physical properties and organic carbon contents of a Rhodic Kandiudox, in Concordia, Santa Catarina, in Southern Brazil. The treatments consisted of different land uses and periods of pig and poultry litter fertilization: silage maize (M7 years), silage maize (M20 years), annual ryegrass pasture (P3 years), annual ryegrass pasture (P15 years), perennial pasture (PP20 years), yerba mate tea (Mt20 years), native forest (NF), and native pasture without manure application (P0). The 0-5, 5-10 and 10-20 cm soil layers were sampled and analyzed for total organic carbon, total nitrogen and soil physical properties such as density, porosity, aggregation, degree of flocculation, and penetration resistance. The organic carbon levels in the cultivated areas treated with organic fertilizer were even lower than in native forest soil. The organic fertilizers and studied management systems reduced the flocculation degree of the clay particles, and low macroporosity was observed in some areas. Despite these changes, a good soil physical structure was maintained, e.g., soil density and resistance to penetration were below the critical limits, whereas aggregate stability was high, which is important to reduce water erosion in these areas with rugged terrain in western Santa Catarina, used for pig and poultry farming.
Resumo:
In the semiarid region of Brazil, inadequate management of cropping systems and low plant biomass production can contribute to reduce soil carbon (C) and nitrogen (N) stocks; therefore, management systems that preserve C and N must be adopted. This study aimed to evaluate the changes in soil C and N stocks that were promoted by agroforestry (agrosilvopastoral and silvopastoral) and traditional agricultural systems (slash-and-burn clearing and cultivation for two and three years) and to compare these systems with the natural Caatinga vegetation after 13 years of cultivation. The experiment was carried out on a typical Ortic Chromic Luvisol in the municipality of Sobral, Ceará, Brazil. Soil samples were collected (layers 0-6, 6-12, 12-20, 20-40 and 40-60 cm) with four replications. The plain, convex and concave landforms in each study situation were analyzed, and the total organic C, total N and densities of the soil samples were assessed. The silvopastoral system promoted the greatest long-term reductions in C and N stocks, while the agrosilvopastoral system promoted the smallest losses and therefore represents a sustainable alternative for soil C and N sequestration in these semiarid conditions. The traditional agricultural system produced reductions of 58.87 and 9.57 Mg ha-1 in the organic C and total N stocks, respectively, which suggests that this system is inadequate for these semiarid conditions. The organic C stocks were largest in the concave landform in the agrosilvopastoral system and in the plain landform in the silvopastoral system, while the total N values were highest in the concave landform in the native, agrosilvopastoral and silvopastoral systems.
Resumo:
ABSTRACT The cultivation of cover crops intercropped with fruit trees is an alternative to maintain mulch cover between plant rows and increase soil organic carbon (C) stocks. The objective of this study was to evaluate changes in soil total organic C content and labile organic matter fractions in response to cover crop cultivation in an orange orchard. The experiment was performed in the state of Bahia, in a citrus orchard with cultivar ‘Pera’ orange (Citrus sinensis) at a spacing of 6 × 4 m. A randomized complete block design with three replications was used. The following species were used as cover crops: Brachiaria (Brachiaria decumbes) – BRAQ, pearl millet (Pennisetum glaucum) – MIL, jack bean (Canavalia ensiformis) – JB, blend (50 % each) of jack bean + millet (JB/MIL), and spontaneous vegetation (SPV). The cover crops were broadcast-seeded between the rows of orange trees and mechanically mowed after flowering. Soil sampling at depths of 0.00-0.10, 0.10-0.20, and 0.20-0.40 m was performed in small soil trenches. The total soil organic C (SOC) content, light fraction (LF), and the particulate organic C (POC), and oxidizable organic C fractions were estimated. Total soil organic C content was not significantly changed by the cover crops, indicating low sensitivity in reacting to recent changes in soil organic matter due to management practices. Grasses enabled a greater accumulation of SOC stocks in 0.00-0.40 m compared to all other treatments. Jack bean cultivation increased LF and the most labile oxidizable organic C fraction (F1) in the soil surface and the deepest layer tested. Cover crop cultivation increased labile C in the 0.00-0.10 m layer, which can enhance soil microbial activity and nutrient absorption by the citrus trees. The fractions LF and F1 may be suitable indicators for monitoring changes in soil organic matter content due to changes in soil management practices.
Resumo:
The distribution of low molecular weight carboxylic acids (LMWCA) was investigated in pore water profiles from two porphyry copper tailings impoundments in Chile (Piuquenes at La Andina and Cauquenes at El Teniente mine). The objectives of this study were (1) to determine the distribution of LMWCA, which are interpreted to be the metabolic byproducts of the autotroph microbial community in this low organic carbon system, and (2) to infer the potential role of these acids in cycling of Fe and other elements in the tailings impoundments. The speciation and mobility of iron, and potential for the release of H+ via hydrolysis of the ferric iron, are key factors in the formation of acid mine drainage in sulfidic mine wastes. In the low-pH oxidation zone of the Piuquenes tailings, Fe(III) is the dominant iron species and shows high mobility. LMWCA, which occur mainly between the oxidation front down to 300 cm below the tailings surface at both locations (e.g., max concentrations of 0.12 mmol/L formate, 0.17 mmol/L acetate, and 0.01 mmol/L pyruvate at Piuquenes and 0.14 mmol/L formate, 0.14 mmol/L acetate, and 0.006 mmol/L pyruvate at Cauquenes), are observed at the same location as high Fe concentrations (up to 71.2 mmol/L Fe(II) and 16.1 mmol/L Fe(III), respectively). In this zone, secondary Fe(111) hydroxides are depleted. Our data suggest that LMWCA may influence the mobility of iron in two ways. First, complexation of Fe(III), through formation of bidentate Fe(III)-LMWCA complexes (e.g., pyruvate, oxalate), may enhance the dissolution of Fe(III) (oxy)hydroxides or may prevent precipitation of Fe(III) (oxy)hydroxides. Soluble Fe(III) chelate complexes which may be mobilized downward and convert to Fe(II) by Fe(III) reducing bacteria. Second, monodentate LMWCA (e.g., acetate and formate) can be used by iron-reducing bacteria as electron donors (e.g., Acidophilum spp.), with ferric iron as the electron acceptor. These processes may, in part, explain the low abundances of secondary Fe(III) hydroxide precipitates below the oxidation front and the high concentrations of Fe(II) observed in the pore waters of some low-sulfide systems. The reduction of Fe(III) and the subsequent increase of iron mobility and potential acidity transfer (Fe(II) oxidation can result in the release of H+ in an oxic environment) should be taken in account in mine waste management strategies.
Resumo:
The stable carbon and oxygen isotope compositions of fossil ostracods are powerful tools to estimate past environmental and climatic conditions. The basis for such interpretations is that the calcite of the valves reflects the isotopic composition of water and its temperature of formation. However, calcite of ostracods is known not to form in isotopic equilibrium with water and different species may have different offsets from inorganic precipitates of calcite formed under the same conditions. To estimate the fractionation during ostracod valve calcification, the oxygen and carbon isotope compositions of 15 species living in Lake Geneva were related to their autoecology and the environmental parameters measured during their growth. The results indicate that: (1) Oxygen isotope fractionation is similar for all species of Candoninae with an enrichment in 18O of more than 30/00 relative to equilibrium values for inorganic calcite. Oxygen isotope fractionation for Cytheroidea is less discriminative relative to the heavy oxygen, with enrichments in 18O for these species of 1.7 to 2.30/00. Oxygen isotope fractionations for Cyprididae are in-between those of Candoninae and Cytheroidea. The difference in oxygen isotope fractionation between ostracods and inorganic calcite has been interpreted as resulting from a vital effect. (2) Comparison with previous work suggests that oxygen isotope fractionation may depend on the total and relative ion content of water. (3) Carbon isotope compositions of ostracod valves are generally in equilibrium with DIC. The specimens' δ13C values are mainly controlled by seasonal variations in δ13CDIC of bottom water or variation thereof in sediment pore water. (4) Incomplete valve calcification has an effect on carbon and oxygen isotope compositions of ostracod valves. Preferential incorporation of at the beginning of valve calcification may explain this effect. (5) Results presented here as well as results from synthetic carbonate growth indicate that different growth rates or low pH within the calcification site cannot be the cause of oxygen isotope 'vital effects' in ostracods. Two mechanisms that might enrich the 18O of ostracod valves are deprotonation of that may also contribute to valve calcification, and effects comparable to salt effects with high concentrations of Ca and/or Mg within the calcification site that may also cause a higher temperature dependency of oxygen isotope fractionation.
Resumo:
Questionnaire studies indicate that high-anxious musicians may suffer from hyperventilation symptoms before and/or during performance. Reported symptoms include amongst others shortness of breath, fast or deep breathing, dizziness and thumping heart. A self-report study by Widmer, Conway, Cohen and Davies (1997) shows that up to seventy percent of the tested highly anxious musicians are hyperventilators during performance. However, no study has yet tested if these self-reported symptoms reflect actual cardiorespiratory changes just before and during performance. Disturbances in breathing patterns and hyperventilation may negatively affect the performance quality in stressful performance situations. The main goal of this study is to determine if music performance anxiety is manifest physiologically in specific correlates of cardiorespiratory activity. We studied 74 professional music students of Swiss Music Universities divided into two groups (high- and lowanxious) based on their self-reported performance anxiety (State-Trait Anxiety Inventory by Spielberger). The students were tested in three distinct situations: baseline, performance without audience, performance with audience. We measured a) breathing patterns, end-tidal carbon dioxide, which is a good non-invasive estimator for hyperventilation, and cardiac activation and b) self-perceived emotions and self-perceived physiological activation. Analyses of heart rate, respiratory rate, self-perceived palpitations, self-perceived shortness of breath and self-perceived anxiety for the 15 most and the 15 least anxious musicians show that high-anxious and low-anxious music students have a comparable physiological activation during the different measurement periods. However, highanxious music students feel significantly more anxious and perceive significantly stronger palpitations and significantly stronger shortness of breath just before and during a public performance. The results indicate that low- and high-anxious music students a) do not differ in the considered physiological responses and b) differ in the considered self-perceived physiological symptoms and the selfreported anxiety before and/or during a public performance.
Resumo:
Moissanite (natural SiC) has been recovered from podiform chromitites of several ophiolite complexes, including the Luobusa and Donqiao ophiolites in Tibet, the Semail ophiolite in Oman and the United Arab Emirates, and the Ray-Iz ophiolite of the Polar Urals, Russia. Taking these new occurrences with the numerous earlier reports of moissanite in diamondiferous kimberlites leads to the conclusion that natural SiC is a widespread mineral in the Earth's mantle, which implies at least locally extremely low redox conditions. The ophiolite moissanite grains are mostly fragments (20 to 150 mu m) with one or more crystal faces, but some euhedral hexagonal grains have also been recovered. Twinned crystals are common in chromitites from the Luobusa ophiolite. The moissanite is rarely colorless, more commonly light bluish-gray to blue or green. Many grains contain inclusions of native Si and Fe-Si alloys (FeSi(2), Fe(3)Si(7)). Secondary ion mass spectrometric (SIMS) analysis shows that the ophiolite-hosted moissanite has a distinctive (13)C-depleted isotopic composition (delta(13)C from -18 to -35 parts per thousand, n=36), much lighter than the main carbon reservoir in the upper mantle (delta(13)C near -5 parts per thousand). The compiled data from moissanite from kimberlites and other mantle settings share the characteristic of strongly (13)C-depleted isotopic composition. This suggests that moissanite originates from a separate carbon reservoir in the mantle or that its formation involved strong isotopic fractionation. The degree of fractionation needed to produce the observed moissanite compositions from the main C-reservoir would be unrealistically large at the high temperatures required for moissanite formation. Subduction of biogenic carbonaceous material could potentially satisfy both the unusual isotopic and redox constraints on moissanite formation, but this material would need to stay chemically isolated from the upper mantle until it reached the high-T stability field of moissanite. The origin of moissanite in the mantle is still unsolved, but all evidence from the upper mantle indicates that it cannot have formed there, barring special and local redox conditions. We suggest, alternatively, that moissanite may have formed in the lower mantle, where the existence of (13)C-depleted carbon is strongly supported by studies of extraterrestrial carbon (Mars, Moon, meteorites). (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Somatic embryogenesis is an efficient method for the production of target cells for soybean genetic transformation. However, this method still offers low percentages of plant regeneration, and perhaps is related to the maturation process and high morphological abnormalities of the matured embryos. This study aimed to identify a maturation medium that could contribute to the outcome of more efficient plant regeneration results. Embryogenic clusters, derived from cotyledons of immature seeds of the soybean cultivars Bragg and IAS5, were used as starting material for embryos development. Different maturation media were tested by using 6% maltose, 3% sucrose or 6% sucrose, combined with or without 25 g L-1 of the osmotic regulator polyethylene glycol (PEG-8000). The histodifferentiated embryos were quantified and classified in morphological types. Percentages of converted embryos were analyzed. Cultivar Bragg resulted in higher matured embryo quantities, but lower percentages were obtained for the conversion in comparison to cultivar IAS5. While the addition of PEG did not affect the number of embryos converted into plants, 6% sucrose enhanced the conversion percent significantly.
Resumo:
Further knowledge of the processes conditioning nitrogen use efficiency (NUE) is of great relevance to crop productivity. The aim of this paper was characterise C and N partitioning during grain filling and their implications for NUE. Cereals such as bread wheat (Triticum aestivum L. cv Califa sur), triticale (× Triticosecale Wittmack cv. Imperioso) and tritordeum (× Tritordeum Asch. & Graebn line HT 621) were grown under low (LN, 5 mm NH4NO3) and high (HN, 15 mm NH4NO3) N conditions. We conducted simultaneous double labelling (12CO2 and 15NH415NO3) in order to characterise C and N partitioning during grain filling. Although triticale plants showed the largest total and ear dry matter values in HN conditions, the large investment in shoot and root biomass negatively affected ear NUE. Tritordeum was the only genotype that increased NUE in both N treatments (NUEtotal), whereas in wheat, no significant effect was detected. N labelling revealed that N fertilisation during post-anthesis was more relevant for wheat and tritordeum grain filling than for triticale. The study also revealed that the investments of C and N in flag leaves and shoots, together with the"waste" of photoassimilates in respiration, conditioned the NUE of plants, and especially under LN. These results suggest that C and N use by these plants needs to be improved in order to increase ear C and N sinks, especially under LN. It is also remarkable that even though tritordeum shows the largest increase in NUE, the low yield of this cereal limits its agronomic value.
Resumo:
To understand dissolved organic carbon (DOC) seasonal dynamics in a coastal oligotrophic site in the north-western Mediterranean Sea, we monitored DOC concentrations monthly over 3 yr, together with the meteorological data and the food-web-related biological processes involved in DOC dynamics. Additional DOC samples were taken in several inshore−offshore transects along the Catalan coast. We found DOC concentrations of ~60 µmol C l−1 in winter, with increasing values through the summer and autumn and reaching 100 to 120 µmol C l−1 in November. There was high inter-annual variability in this summer DOC accumulation, with values of 36, 69 and 13 µmol C l−1 for 2006, 2007 and 2008, respectively. The analysis of the microbial food-web processes involved in the DOC balance did not reveal the causes of this accumulation, since the only occasion on which we observed net DOC production (0.3 ± 1 µmol C l−1 d−1 on average) was in 2007, and the negative DOC balance of 2006 and 2008 did not prevent DOC accumulating. The DOC accumulation episodes coincided with low rates of water renewal (average 0.037 ± 0.021 d−1 from May to October) compared with those of winter to early spring (average 0.11 ± 0.048 d−1 from November to April). Indeed, the amount of DOC accumulated each year was inversely correlated with the average summer rainfall. We hypothesize that decreased DOC turn-over due to photochemical or biological processes mostly active during the summer and low water renewal rate combine to determine seasonal DOC accumulation and influence its inter-annual variability.