959 resultados para Liver diseases
Resumo:
The porphyrogenic drug allylisopropylacetamide, a potent inducer of delta-aminolaevulinate synthetase, specifically increases nucleoplasmic RNA synthesis in rat liver. The drug-mediated increase in nucleoplasmic RNA synthesis is blocked by cycloheximide and haemin, which also inhibit the enzyme induction.
Resumo:
After partial hepatectomy the net increase in tissue weight and in RNA, DNA and proteins in the regenerating liver was markedly less in vitamin A-deleted or retinoic acid-supplemented male rats, compared with the corresponding normal control or retinyl acetate-supplemented ones.
Resumo:
Indoor air quality is a critical factor in the classroom due to high people concentration in a unique space. Indoor air pollutant might increase the chance of both long and short-term health problems among students and staff, reduce the productivity of teachers and degrade the student’s learning environment and comfort. Adequate air distribution strategies may reduce risk of infection in classroom. So, the purpose of air distribution systems in a classroom is not only to maximize conditions for thermal comfort, but also to remove indoor contaminants. Natural ventilation has the potential to play a significant role in achieving improvements in IAQ. The present study compares the risk of airborne infection between Natural Ventilation (opening windows and doors) and a Split-System Air Conditioner in a university classroom. The Wells-Riley model was used to predict the risk of indoor airborne transmission of infectious diseases such as influenza, measles and tuberculosis. For each case, the air exchange rate was measured using a CO2 tracer gas technique. It was found that opening windows and doors provided an air exchange rate of 2.3 air changes/hour (ACH), while with the Split System it was 0.6 ACH. The risk of airborne infection ranged between 4.24 to 30.86 % when using the Natural Ventilation and between 8.99 to 43.19% when using the Split System. The difference of airborne infection risk between the Split System and the Natural Ventilation ranged from 47 to 56%. Opening windows and doors maximize Natural Ventilation so that the risk of airborne contagion is much lower than with Split System.
Resumo:
An unusual intermediate bound to the enzyme was detected in the interaction of thiosemicarbazide with sheep liver serine hydroxymethyltransferase. This intermediate had absorbance maxima at 464 and 440 nm. Such spectra are characteristic of resonance stabilized intermediates detected in the interaction of substrates and quasi-substrates with pyridoxal phosphate enzymes. An intermediate of this kind has not been detected in the interaction of thiosemicarbazide with other pyridoxal phosphate enzymes. This intermediate was generated slowly (t 1/2 = 4 min) following the addition of thiosemicarbazide (200 microM) to sheep liver serine hydroxymethyltransferase (5 microM). It was bound to the enzyme as evidenced by circular dichroic bands at 464 and 440 nm and the inability to be removed upon Centricon filtration. The kinetics of interaction revealed that thiosemicarbazide was a slow binding reversible inhibitor in this phase with a k(on) of 11 M-1 s-1 and a k(off) of 5 x 10(-4) s-1. The intermediate was converted very slowly (k = 4 x 10(-5) s-1) to the final products, namely the apoenzyme and the thiosemicarbazone of pyridoxal phosphate. A minimal kinetic mechanism involving the initial conversion to the intermediate absorbing at longer wavelengths and the conversion of this intermediate to the final product, as well as, the formation of pyridoxal phosphate-thiosemicarbazone directly by an alternate pathway is proposed.
Resumo:
1.Administration of noradrenaline increased the incorporation of [1-14C]acetate into hepatic sterols and the activity of liver microsomal 3-hydroxy-3-methylglutaryl-CoA reductase. 2. The stimulation was observed at short time-intervals with a maximum at 4h and was progressive with increasing concentrations of noradrenaline. 3. Protein synthesis de novo was a necessary factor for the effect. 4. The stimulatory effect was not mediated through the adrenergic receptors, but appears to involve a direct action of the hormone within the hepatocyte.
Resumo:
The pathogenesis of inflammatory rheumatic diseases, including rheumatoid arthritis (RA) and spondyloarthropathies (SpAs) such as reactive arthritis (ReA), is incompletely understood. ReA is a sterile joint inflammation, which may follow a distal infection caused by Gram-negative bacteria that have lipopolysaccharide (LPS) in their outer membrane. The functions of innate immunity that may affect the pathogenesis, prognosis and treatment of these diseases were studied in this thesis. When compared with healthy controls, whole blood monocytes of healthy subjects with previous ReA showed enhanced capacity to produce TNF, an essential proinflammatory cytokine, in response to adherent conditions (mimicking vascular endothelium made adherent by inflammatory signals) and non-specific protein kinase C stimulation. Also, blood neutrophils of these subjects showed high levels of CD11b, an important adhesion molecule, in response to adherence or LPS. Thus, high responsiveness of monocytes and neutrophils when encountering inflammatory stimuli may play a role in the pathogenesis of ReA. The results also suggested that the known risk allele for SpAs, HLA-B27, may be an additive contributor to the observed differences. The promoter polymorphisms TNF 308A and CD14 (gene for an LPS receptor component) 159T were found not to increase the risk of acute arthritis. However, all female patients who developed chronic SpA had 159T and none of them had 308A, possibly reflecting an interplay between hormonal and inflammatory signals in the development of chronic SpA. Among subjects with early RA, those having the polymorphic TLR4 +896G allele (causing the Asp299Gly change in TLR4, another component of LPS receptor) required a combination of disease-modifying antirheumatic drugs to achieve remission. It is known that rapid treatment response is essential in order to maintain the patients work ability. Hence, +896G might be a candidate marker for identifying the patients who need combination treatment. The production of vascular endothelial growth factor (VEGF), which strongly promotes vascular permeability and angiogenesis that takes place e.g. early in rheumatic joints, was induced by LPS and inhibited by interferon (IFN)-alpha in peripheral blood mononuclear cells. These long-living cells might provide a source of VEGF when stimulated by LPS and migrating to inflamed joints, and the effect of IFN-alpha may contribute to the clinical efficacy of this cytokine in inhibiting joint inflammation.
Resumo:
In an attempt to unravel the role of conserved histidine residues in the structure-function of sheep liver cytosolic serine hydroxymethyltransferase (SHMT), three site-specific mutants (H134N, H147N, and H150N) were constructed and expressed, H134N and H147N SHMTs had K-m values for L-serine, L-allo-threonine and beta-phenylserine similar to that of wild type enzyme, although the k(cat) values were markedly decreased, H134N SHMT was obtained in a dimeric form with only 6% of bound pyridoxal 5'-phosphate (PLP) compared with the wild type enzyme, Increasing concentrations of PLP (up to 500 mu M) enhanced the enzyme activity without changing its oligomeric structure, indicating that His-134 may be involved in dimer-dimer interactions, H147N SHMT was obtained in a tetrameric form but with very little PLP (3%) bound to it, suggesting that this residue was probably involved in cofactor binding, Unlike the wild type enzyme, the cofactor could be easily removed by dialysis from H147N SHMT, and the apoenzyme thus formed was present predominantly in the dimeric form, indicating that PLP binding is at the dimer-dimer interface, H150N SHMT was obtained in a tetrameric form with bound PLP, However, the mutant had very little enzyme activity (<2%). The k(cat)/K-m values for L-serine, L-allo-threonine and beta-phenylserine were 80-, 56-, and SS-fold less compared with wild type enzyme, Unlike the wild type enzyme, it failed to form the characteristic quinonoid intermediate and was unable to carry out the exchange of 2-S proton from glycine in the presence of H-4-folate. However, it could form an external aldimine with serine and glycine, The wild type and the mutant enzyme had similar K-d values for serine and glycine, These results suggest that His-150 may be the base that abstracts the alpha-proton of the substrate, leading to formation of the quinonoid intermediate in the reaction catalyzed by SHMT.
Resumo:
A positive cis-acting DNA element in the near 5'-upstream region of the CYP2B1/B2 genes in rat liver was found to play an important role in the transcription of these genes. An oligonucleotide covering -69 to -98 nt mimicked the gel mobility shift pattern given by the fragment -179 to +29 nt, which was earlier found adequate to confer the regulatory features of this gene. Two major complexes were seen, of which the slower and faster moving complexes became intense under uninduced and Phenobarbitone-induced conditions respectively. Minigene cloned DNA plasmid covering -179 to +181 nt in pUC 19 and Bal 31 mutants derived from this parent were transcribed in whole nuclei and cell free transcription extracts and mutants containing only upto -75 nt of the upstream were poorly transcribed. Transcription extracts from phenobarbitone-injected rat liver nuclei were significantly more active than extracts from uninduced rats in transcribing the minigene constructs. Addition of the oligonucleotide (-69 to -98nt) specifically inhibited the transcription of the minigene construct (-179 to +181 nt) in the cell free transcription system. It is therefore, concluded that the region -69 to -98 nt acts as a positive cis-acting element in the transcription of the CYP2B1/B2 genes and in mediating the inductive effects of phenobarbitone.
Resumo:
At 2-3 h after phenobaribtal administration, the drug has no effect on nucleoplasmic RNA synthesis and decreases nucleolar RNA synthesis. However, at this time there is an increase in the labelling of cytoplasmic poly(A)-containing RNA, even though there is decreased labelling of total polyribosomal RNA. The decrease in labelling of nucleolar and total polyribosomal RNA owing to phenobarbital is a transient phenomenon. Under similar conditions, 3-methylcholanthrene has no effect on nucleolar RNA synthesis, but leads to an increase in synthesis of nucleoplasmic and cytoplasmic poly(A)-containing RNA. Cytosol isolated from phenobarbital-treated, but not from 3-methyl-cholanthrene-treated, animals facilitates an enhanced transport of RNA from nuclei. At the time points investigated, 3-methylcholanthrene or its metabolite shows a 10-15-fold higher concentration in the chromatin than that of phenobarbital or its metabolite. It is suggested that the primary effect of phenobarbital is at the cytoplasmic level, promoting the transport of RNA from the nuclei, which can act as a trigger for enhanced transcription at later periods. 3-Methylcholanthrene or its metabolite directly binds to the chromatin and evokes a selective transcriptional response.
Resumo:
Gamma delta T cells are thought to mediate immune responses at epithelial surfaces. We have quantified and characterized hepatic and peripheral blood gamma delta T cells from 11 normal and 13 unresolved tumor-bearing human liver specimens. gamma delta T cells are enriched in normal liver (6.6% of T cells) relative to matched blood (0.9%; P = 0.008). The majority express CD4(-)CD8(-) phenotypes and many express CD56 and/or CD161. In vitro, hepatic gamma delta T cells can be induced to kill tumor cell lines and release interferon-gamma, tumor necrosis factor-alpha, interleukin-2 and interleukin-4. Analysis of V gamma and V delta chain usage indicated that V delta 3(+) cells are expanded in normal livers (21.2% of gamma delta T cells) compared to blood (0.5%; P = 0.001). Tumor-bearing livers had significant expansions and depletions of gamma delta T cell subsets but normal cytolytic activity. This study identifies novel populations of liver T cells that may play a role in immunity against tumors.
Resumo:
CD1d-restricted natural killer T (NKT) cells expressing invariant Valpha14Jalpha18 T cell receptor alpha-chains are abundant in murine liver and are implicated in the control of malignancy, infection and autoimmunity. Invariant NKT cells have potent anti-metastatic effects in mice and phase I clinical trials involving their homologues in humans are ongoing. However, invariant NKT cells are less abundant in human liver ( approximately 0.5% of hepatic T cells) than in murine liver (up to 50%) and it is not known if other hepatic T cells are CD1-restricted. We have examined expression of CD1a, CD1b, CD1c and CD1d mRNA and protein in human liver and evaluated the reactivity of mononuclear cells (MNC) from histologically normal and tumour-bearing human liver specimens against these CD1 isoforms. Messenger RNA for all CD1 isotypes was detectable in all liver samples. CD1c and CD1d were expressed at the protein level by hepatic MNC. CD1d, only, was detectable at the cell surface, but CD1c and CD1d were found at an intracellular location in significant numbers of liver MNC. CD1b was not expressed by MNC from healthy livers but was detectable within MNC in all tumour samples tested. Hepatic T cells exhibited reactivity against C1R cells expressing transfected CD1c and CD1d, but neither CD1a nor CD1b. These cells secreted interferon-gamma (IFN-gamma) but not interleukin-4 (IL-4) upon stimulation. In contrast, similar numbers of peripheral T cells released 13- and 16-fold less IFN-gamma in response to CD1c and CD1d, respectively. CD1c and CD1d expression and T cell reactivity were not altered in tumour-bearing liver specimens compared to histologically normal livers. These data suggest that, in addition to invariant CD1d-restricted NKT cells, autoreactive T cells that recognise CD1c and CD1d and release inflammatory cytokines are abundant in human liver.
Resumo:
Hepatotoxicity due to overdose of the analgesic and antipyretic acetaminophen (A-PAIP) is a major cause of liver failure in adults. To better understand the contributions of different signaling pathways, the expression and role of Ras activation was evaluated after oral dosing of mice with APAP (400-500 mg/kg). Ras-guanosine triphosphate (GTP) is induced early and in an oxidative stress-dependent manner. The functional role of Ras activation was studied by a single intraperitoneal injection of the neutral sphingomyelinase and farnesyltransferase inhibitor (FTI) manumycin A (I mg/kg), which lowers induction of Ras-GTP and serum amounts of alanine aminotransferase (ALT). APAP dosing decreases hepatic glutathione amounts, which are not affected by manumycin A treatment. However, APAP-induced activation of c-Jun N-terminal kinase, which plays an important role, is reduced by manumycin A. Also, APAP-induced mitochondrial reactive oxygen species are reduced by manumycin A at a later time point during liver injury. Importantly, the induction of genes involved in the inflammatory response (including iNos, gp91phox, and Fasl) and serum amounts of proinflammatory cytokines interferon-gamma (IFN gamma) and tumor necrosis factor alpha, which increase greatly with APAP challenge, are suppressed with manumycin A. The FTI ctivity of manumycin A is most likely involved in reducing APAP-induced liver injury, because a specific neutral sphingomyelinase inhibitor, GW4869 (I mg/kg), did not show any hepatoprotective effect. Notably, a structurally distinct FTI, gliotoxin (I mg/kg), also inhibits Ras activation and reduces serum amounts of ALT and IFN-gamma after APAP dosing. Finally, histological analysis confirmed the hepatoprotective effect f manumycin A and gliotoxin during APAP-induced liver damage. Conclusion: This study identifies a key role for Ras activation and demonstrates the therapeutic efficacy of FTIs during APAP-induced liver injury.
Resumo:
Histones H1a and H1t are two major linker histone variants present at the pachytene interval of mammalian spermatogenesis. The DNA- and chromatin-condensing properties of these two variants isolated from rat testes were studied and compared with those from rat liver. For this purpose, the histone H1 subtypes were purified from the respective tissues using bath acid and salt extraction procedures, Circular dichroism studies revealed that acid exposure during isolation affects the alpha-helical structure of both the globular domain (in the presence of 1 M NaCl) and the C-terminal lambda-tail (in the presence of 60% trifluoroethanol). The condensation of rat oligonucleosomal DNA, as measured by circular dichroism spectroscopy, by the salt-extracted histone H1 was at least 10 times more efficient than condensation by the acid-extracted histone H1. A site size of 16-20 base pairs was calculated for the salt-extracted histone H1. Among the different histone H1 subtypes, somatic histone H1bdec had the highest DNA-condensing property, followed by histone H1a and histone H1t. All the salt-extracted histones condensed rat oligonucleosomal DNA more efficiently than linear pBR-322 DNA, Histones H1bdec and H1a condensed histone H1-depleted chromatin, prepared from rat liver nuclei, with relatively equal efficiency. On the other hand, there was no condensation of histone H1-depleted chromatin with the testes specific histone H1t. A comparison of the amino acid sequences of histone H1d (rat) and histone H1t (rat) revealed several interesting differences in the occurrence of DNA-binding motifs at the C-terminus. A striking observation is the presence of a direct repeat of an octapeptide motif K(A)T(S)PKKA(S)K(T)K(A) in histone H1d that is absent in histone H1t.
Resumo:
Histones H1a and H1t are two major linker histone variants present at the pachytene interval of mammalian spermatogenesis. The DNA- and chromatin-condensing properties of these two variants isolated from rat testes were studied and compared with those from rat liver. For this purpose, the histone H1 subtypes were purified from the respective tissues using bath acid and salt extraction procedures, Circular dichroism studies revealed that acid exposure during isolation affects the alpha-helical structure of both the globular domain (in the presence of 1 M NaCl) and the C-terminal lambda-tail (in the presence of 60% trifluoroethanol). The condensation of rat oligonucleosomal DNA, as measured by circular dichroism spectroscopy, by the salt-extracted histone H1 was at least 10 times more efficient than condensation by the acid-extracted histone H1. A site size of 16-20 base pairs was calculated for the salt-extracted histone H1. Among the different histone H1 subtypes, somatic histone H1bdec had the highest DNA-condensing property, followed by histone H1a and histone H1t. All the salt-extracted histones condensed rat oligonucleosomal DNA more efficiently than linear pBR-322 DNA, Histones H1bdec and H1a condensed histone H1-depleted chromatin, prepared from rat liver nuclei, with relatively equal efficiency. On the other hand, there was no condensation of histone H1-depleted chromatin with the testes specific histone H1t. A comparison of the amino acid sequences of histone H1d (rat) and histone H1t (rat) revealed several interesting differences in the occurrence of DNA-binding motifs at the C-terminus. A striking observation is the presence of a direct repeat of an octapeptide motif K(A)T(S)PKKA(S)K(T)K(A) in histone H1d that is absent in histone H1t.