915 resultados para Live Cell Imaging


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During illumination, Ca2+ enters fly photoreceptor cells through light-activated channels that are located in the rhabdomere, the compartment specialized for phototransduction. From the rhabdomere, Ca2+ diffuses into the cell body. We visualize this process by rapidly imaging the fluorescence in a cross section of a photoreceptor cell injected with a fluorescent Ca2+ indicator in vivo. The free Ca2+ concentration in the rhabdomere shows a very fast and large transient shortly after light onset. The free Ca2+ concentration in the cell body rises more slowly and displays a much smaller transient. After ≈400 ms of light stimulation, the Ca2+ concentration in both compartments reaches a steady state, indicating that thereafter an amount of Ca2+, equivalent to the amount of Ca2+ flowing into the cell, is extruded. Quantitative analysis demonstrates that during the steady state, the free Ca2+ concentration in the rhabdomere and throughout the cell body is the same. This shows that Ca2+ extrusion takes place very close to the location of Ca2+ influx, the rhabdomere, because otherwise gradients in the steady-state distribution of Ca2+ should be measured. The close colocalization of Ca2+ influx and Ca2+ extrusion ensures that, after turning off the light, Ca2+ removal from the rhabdomere is faster than from the cell body. This is functionally significant because it ensures rapid dark adaptation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transmembrane protein tyrosine phosphatases, such as CD45, can act as both positive and negative regulators of cellular signaling. CD45 positively modulates T cell receptor (TCR) signaling by constitutively priming p56lck through the dephosphorylation of the C-terminal negative regulatory phosphotyrosine site. However, CD45 can also exert negative effects on cellular processes, including events triggered by integrin-mediated adhesion. To better understand these opposing actions of tyrosine phosphatases, the subcellular compartmentalization of CD45 was imaged by using laser scanning confocal microscopy during functional TCR signaling of live T lymphocytes. On antigen engagement, CD45 was first excluded from the central region of the interface between the T cell and the antigen-presenting surface where CD45 would inhibit integrin activation. Subsequently, CD45 was recruited back to the center of the contact to an area adjacent to the site of sustained TCR engagement. Thus, CD45 is well positioned within a supramolecular assembly in the vicinity of the engaged TCR, where CD45 would be able to maintain src-kinase activity for the duration of TCR engagement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have generated transgenic medaka (teleost, Oryzias latipes), which allow us to monitor germ cells by green fluorescent protein (GFP) fluorescence in live specimens. Two medaka strains, himedaka (orange–red variety) and inbred QurtE, were used. The transgenic lines were achieved by microinjection of a construct containing the putative promoter region and 3′ region of the medaka vasa gene (olvas). The intensity of GFP fluorescence increases dramatically in primordial germ cells (PGCs) located in the ventrolateral region of the posterior intestine around stage 25 (the onset of blood circulation). Whole-mount in situ hybridization and monitoring of ectopically located cells by GFP fluorescence suggested that (i) the increase in zygotic olvas expression occurs after PGC specification and (ii) PGCs can maintain their cell characteristics ectopically after stages 20–25. Around the day of hatching, the QurtE strain clearly exhibits sexual dimorphisms in the number of GFP fluorescent germ cells, a finding consistent with the appearance of leucophores, a sex-specific marker of QurtE. The GFP expression persists throughout the later stages in the mature ovary and testis. Thus, these transgenic medaka represent a live vertebrate model to investigate how germ cells migrate to form sexually dimorphic gonads, as well as a potential assay system for environmental substances that may affect gonad development. The use of a transgenic construct as a selective marker to efficiently isolate germ-line-transmitting founders during embryogenesis is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high affinity receptor for IgE, FcɛRI on mast cells and basophils plays an essential role in immunological defense. Upon multivalent antigen binding, FcɛRI becomes phoshorylated by the protein-tyrosine kinase Lyn, as a result of receptor clustering in lipid rafts. FcɛRI has been shown to be ubiquitinated. Ubiquitination can lead to degradation by proteasomes, but it can also act as a sorting signal to internalize proteins destined to the endosomal/lysosomal pathway. We have analyzed whether FcɛRI ubiquitination takes place within rafts. We report biochemical and imaging evidence in rat basoleukemia cells for the presence of ubiquitinated FcɛRI in clustered rafts upon receptor activation. Moreover, we demonstrated that the ubiquitin ligases Cbl and Nedd4 colocalize with FcɛRI patches and showed that both ligases become associated with lipid rafts after activation of IgE signaling. Because Cbl is known to interact with the FcɛRI signaling complex, ubiquitination is likely to be an important parameter regulating IgE-triggered signaling occurring in rafts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Binding of erythropoietin (Epo) to the Epo receptor (EpoR) is crucial for production of mature red cells. Although it is well established that the Epo-bound EpoR is a dimer, it is not clear whether, in the absence of ligand, the intact EpoR is a monomer or oligomer. Using antibody-mediated immunofluorescence copatching (oligomerizing) of epitope-tagged receptors at the surface of live cells, we show herein that a major fraction of the full-length murine EpoR exists as preformed dimers/oligomers in BOSC cells, which are human embryo kidney 293T-derived cells. This observed oligomerization is specific because, under the same conditions, epitope-tagged EpoR did not oligomerize with several other tagged receptors (thrombopoietin receptor, transforming growth factor β receptor type II, or prolactin receptor). Strikingly, the EpoR transmembrane (TM) domain but not the extracellular or intracellular domains enabled the prolactin receptor to copatch with EpoR. Preformed EpoR oligomers are not constitutively active and Epo binding was required to induce signaling. In contrast to tyrosine kinase receptors (e.g., insulin receptor), which cannot signal when their TM domain is replaced by the strongly dimerizing TM domain of glycophorin A, the EpoR could tolerate the replacement of its TM domain with that of glycophorin A and retained signaling. We propose a model in which TM domain-induced dimerization maintains unliganded EpoR in an inactive state that can readily be switched to an active state by physiologic levels of Epo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To quantitatively investigate the trafficking of the transmembrane lectin VIP36 and its relation to cargo-containing transport carriers (TCs), we analyzed a C-terminal fluorescent-protein (FP) fusion, VIP36-SP-FP. When expressed at moderate levels, VIP36-SP-FP localized to the endoplasmic reticulum, Golgi apparatus, and intermediate transport structures, and colocalized with epitope-tagged VIP36. Temperature shift and pharmacological experiments indicated VIP36-SP-FP recycled in the early secretory pathway, exhibiting trafficking representative of a class of transmembrane cargo receptors, including the closely related lectin ERGIC53. VIP36-SP-FP trafficking structures comprised tubules and globular elements, which translocated in a saltatory manner. Simultaneous visualization of anterograde secretory cargo and VIP36-SP-FP indicated that the globular structures were pre-Golgi carriers, and that VIP36-SP-FP segregated from cargo within the Golgi and was not included in post-Golgi TCs. Organelle-specific bleach experiments directly measured the exchange of VIP36-SP-FP between the Golgi and endoplasmic reticulum (ER). Fitting a two-compartment model to the recovery data predicted first order rate constants of 1.22 ± 0.44%/min for ER → Golgi, and 7.68 ± 1.94%/min for Golgi → ER transport, revealing a half-time of 113 ± 70 min for leaving the ER and 1.67 ± 0.45 min for leaving the Golgi, and accounting for the measured steady-state distribution of VIP36-SP-FP (13% Golgi/87% ER). Perturbing transport with AlF4− treatment altered VIP36-SP-GFP distribution and changed the rate constants. The parameters of the model suggest that relatively small differences in the first order rate constants, perhaps manifested in subtle differences in the tendency to enter distinct TCs, result in large differences in the steady-state localization of secretory components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent discovery of long term AIDS nonprogressors who harbor nef-attenuated HIV suggests that a naturally occurring live vaccine for AIDS may already exist. Animal models have shown that a live vaccine for AIDS, attenuated in nef, is the best candidate vaccine. There are considerable risks, real and perceived, with the use of live HIV vaccines. We have introduced a conditional lethal genetic element into HIV-1 and simian immunodeficiency virus (SIV) molecular clones deleted in nef. The antiviral strategy we employed targets both virus replication and the survival of the infected cell. The suicide gene, herpes simplex virus thymidine kinase (tk), was expressed and maintained in HIV over long periods of time. Herpes simplex virus tk confers sensitivity to the antiviral activity of acyclic nucleosides such as ganciclovir (GCV). HIV-tk and SIV-tk replication were sensitive to GCV at subtoxic concentrations, and virus-infected cells were eliminated from tumor cell lines as well as primary cell cultures. We found the HIV-tk virus to be remarkably stable even after being cultured in media containing a low concentration of GCV and then challenged with the higher dose and that while GCV resistant escape mutants did arise, a significant fraction of the virus remained sensitive to GCV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have devised a microspectroscopic strategy for assessing the intracellular (re)distribution and the integrity of the primary structure of proteins involved in signal transduction. The purified proteins are fluorescent-labeled in vitro and reintroduced into the living cell. The localization and molecular state of fluorescent-labeled protein kinase C beta I isozyme were assessed by a combination of quantitative confocal laser scanning microscopy, fluorescence lifetime imaging microscopy, and novel determinations of fluorescence resonance energy transfer based on photobleaching digital imaging microscopy. The intensity and fluorescence resonance energy transfer efficiency images demonstrate the rapid nuclear translocation and ensuing fragmentation of protein kinase C beta I in BALB/c3T3 fibroblasts upon phorbol ester stimulation, and suggest distinct, compartmentalized roles for the regulatory and catalytic fragments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superantigens, such as toxic shock syndrome toxin 1 (TSST-1), have been implicated in the pathogenesis of several autoimmune and allergic diseases associated with polyclonal B cell activation. In this report, we studied the in vitro effects of TSST-1 on B cell activation. We show herein that TSST-1 produced antagonistic effects on Ig synthesis by peripheral blood mononuclear cells (PBMC) from normal subjects, depending on the concentration used; Ig production was inhibited at 1000 pg/ml (P < 0.01) and enhanced at 1 and 0.01 pg/ml (P < 0.01) of toxin. Cultures of PBMC were then examined for morphologic features and DNA fragmentation characteristic for apoptosis. B cells exhibited a significantly higher (P < 0.01) incidence of apoptosis after stimulation with 1000 pg/ml of TSST-1 compared with 1 or 0.01 pg/ml of toxin or medium alone. Abundant expression of Fas, a cell surface protein that mediates apoptosis, was detected on B cells after stimulation with 1000 pg/ml of TSST-1 and was significantly higher on B cells undergoing apoptosis than on live cells (P = 0.01). Additionally, increased Fas expression and B cell death occurred at concentrations of TSST-1 inducing the production of high amounts of gamma interferon (IFN-gamma), and both events could be blocked by neutralizing anti-IFN-gamma antibody. These findings suggest that high concentrations of TSST-1 can induce IFN-gamma-dependent B cell apoptosis, whereas at low concentrations it stimulates Ig synthesis by PBMC from normal subjects. These findings support the concept that staphylococcal toxins have a role in B cell hyperactivity in autoimmunity and allergy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The p53 protein is an attractive target for immunotherapy, because mutations in the p53 gene are the most common genetic alterations found in human tumors. These mutations result in high levels of p53 protein in the tumor cell, whereas the expression level of wild-type p53 in nonmalignant tissue is usually much lower. Several canarypox virus recombinants expressing human or murine p53 in wild-type or mutant form were constructed. Immunization with these viruses protected BALB/c mice from a challenge with an isogenic and highly tumorigenic mouse fibroblast tumor cell line expressing high levels of mutant p53. The tumor protection was equally effective regardless of whether wild-type or mutant p53 was used for the immunization, indicating that the immunologic response was not dependent on any particular p53 mutation and that immunization with this live virus vaccine works effectively against mutant p53 protein expressed in a tumor cell. In tumors escaping immunologic rejection, the expression of the p53 protein was commonly down-regulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little is known about the mechanisms involved in human gammadelta T-cell tolerance to self or to foreign antigens. Patients with congenital toxoplasmosis offer a unique opportunity to examine Vdelta2+ gammadelta T-cell tolerance. Analysis of gammadelta T cells in patients with congenital toxoplasmosis revealed evidence for anergy of these cells with or without clonal Vdelta2+ gammadelta T-cell expansion in the acute phase of the Toxoplasma infection. T cells in general were unresponsive and did not proliferate upon exposure to mitogens or to Toxoplasma lysate antigens or in response to live Toxoplasma-infected cells when the congenitally infected infants were 1 month of age, and they exhibited selective anergy to Toxoplasma lysate antigens and live Toxoplasma-infected cells when the infants were aged 5 months. During the chronic phase of congenital toxoplasmosis in the patients who were more than I year of age, the repertoires of the gammadelta T-cell receptors were found to be within normal ranges. In addition, in the chronic phase, the gammadelta T cells proliferated and secreted gamma-interferon in response to exposure to live Toxoplasmia-infected cells. By contrast, alphabeta T cells remained anergic. Vdelta2+ gammadelta T cells have been considered to undergo extrathymic maturation and thus to be subject to development of peripheral tolerance. Our findings indicate that Vdelta2+ gammadelta T-cell tolerance was lost in these infected infants earlier than alphabeta T-cell tolerance. These findings suggest that gammadelta T cells play a role in protection against Toxoplasma gondii in the chronic phase when congenitally infected children are more than 1 year of age, especially in those in whom alphabeta T cells continue to exhibit deficits in specific immune responses to Toxoplasma antigens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years observations at the level of individual atoms and molecules became possible by microscopy and spectroscopy. Imaging of single fluorescence molecules has been achieved but has so far been restricted to molecules in the immobile state. Here we provide methodology for visualization of the motion of individual fluorescent molecules. It is applied to imaging of the diffusional path of single molecules in a phospholipid membrane by using phospholipids carrying one rhodamine dye molecule. For this methodology, fluorescence microscopy was carried to a sensitivity so that single fluorescent molecules illuminated for only 5 ms were resolvable at a signal/noise ratio of 28. Repeated illuminations permitted direct observation of the diffusional motion of individual molecules with a positional accuracy of 30 nm. Such capability has fascinating potentials in bioscience--for example, to correlate biological functions of cell membranes with movements, spatial organization, and stoichiometries of individual components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional myosin plays a key role in the cytoskeletal reorganization necessary for cytokinesis, migration, and morphological changes associated with development in nonmuscle cells. We have made a fusion between the green fluorescent protein (GFP) and the Dictyostelium discoideum myosin heavy chain (GFP-myosin). The unique Dictyostelium system allows us to test the GFP-tagged myosin for activity both in vivo and in vitro. Expression of GFP-myosin rescues all myosin null cell defects. Additionally, GFP-myosin purified from these cells exhibits the same ATPase activities and in vitro motility as wild-type myosin. GFP-myosin is concentrated in the cleavage furrow during cytokinesis and in the posterior cortex of migrating cells. Surprisingly, GFP-myosin concentration increases transiently in the tips of retracting pseudopods. Contrary to previous thinking, this suggests that conventional myosin may play an important role in the dynamics of pseudopods as well as filopodia, lamellipodia, and other cellular protrusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intracellular stages of apicomplexan parasites are known to extensively modify their host cells to ensure their own survival. Recently, considerable progress has been made in understanding the molecular details of these parasite-dependent effects for Plasmodium-, Toxoplasma- and Theileria-infected cells. We have begun to understand how Plasmodium liver stage parasites protect their host hepatocytes from apoptosis during parasite development and how they induce an ordered cell death at the end of the liver stage. Toxoplasma parasites are also known to regulate host cell survival pathways and it has been convincingly demonstrated that they block host cell major histocompatibility complex (MHC)-dependent antigen presentation of parasite epitopes to avoid cell-mediated immune responses. Theileria parasites are the masters of host cell modulation because their presence immortalises the infected cell. It is now accepted that multiple pathways are activated to induce Theileria-dependent host cell transformation. Although it is now known that similar host cell pathways are affected by the different parasites, the outcome for the infected cell varies considerably. Improved imaging techniques and new methods to control expression of parasite and host cell proteins will help us to analyse the molecular details of parasite-dependent host cell modifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND INFORMATION The Plasmodium parasite, during its life cycle, undergoes three phases of asexual reproduction, these being repeated rounds of erythrocytic schizogony, sporogony within oocysts on the mosquito midgut wall and exo-erythrocytic schizogony within the hepatocyte. During each phase of asexual reproduction, the parasite must ensure that every new daughter cell contains an apicoplast, as this organelle cannot be formed de novo and is essential for parasite survival. To date, studies visualizing the apicoplast in live Plasmodium parasites have been restricted to the blood stages of Plasmodium falciparum. RESULTS In the present study, we have generated Plasmodium berghei parasites in which GFP (green fluorescent protein) is targeted to the apicoplast using the specific targeting sequence of ACP (acyl carrier protein), which has allowed us to visualize this organelle in live Plasmodium parasites. During each phase of asexual reproduction, the apicoplast becomes highly branched, but remains as a single organelle until the completion of nuclear division, whereupon it divides and is rapidly segregated into newly forming daughter cells. We have shown that the antimicrobial agents azithromycin, clindamycin and doxycycline block development of the apicoplast during exo-erythrocytic schizogony in vitro, leading to impaired parasite maturation. CONCLUSIONS Using a range of powerful live microscopy techniques, we show for the first time the development of a Plasmodium organelle through the entire life cycle of the parasite. Evidence is provided that interference with the development of the Plasmodium apicoplast results in the failure to produce red-blood-cell-infective merozoites.