996 resultados para Light metals
Resumo:
Specific wear rates of a range of metals and alloys upon dry sliding are compiled together to discern the influence of material properties on wear. No systematic influence of bulk hardness was found. Following our previous work on the influence of power dissipative capacity of metals on wear, we explore the influence of thermal diffusivity on wear of these metals.
Resumo:
Ternary Schiff base copper(II) complex [CuL(phen)](ClO4), where HL is 2-(methylthio)ethylsalicylaldimine and phen is 1,10-phenanthroline, has been prepared and structurally characterized by X-ray crystallography. The complex shows a CuN3OS coordination in a square-pyramidal (4 + 1) geometry with the sulfur as an equatorial ligand. The complex is an avid binder to double-stranded DNA in the minor groove and exhibits both photonuclease and chemical nuclease activity. When exposed to UV light of 312 nm (96 W) or visible light of 532 nm (125 W) under aerobic conditions, the complex causes significant cleavage of supercoiled pUC19 DNA in the absence of any externally added reducing agent or H2O2.
Resumo:
Multiple beam interference of light in a wedge is considered when the wedge is filled with an absorbing medium. The aim is to examine a method that may give values of both the real and the imaginary parts of the refractive index of the absorbing medium. We propose here a method to determine these quantities from simple techniques like fringe counting and interferometry, by using as the incident wave either a single Gaussian beam or two parallel Gaussian beams.
Resumo:
Gold nanoparticles with average diameters in the range 2.515 nm, prepared at the organic/aqueous interface by using tetrakis( hydroxymethyl) phosphonium chloride (THPC) as reducing agent, exhibit ferromagnetism whereby the saturation magnetization M(S) increases with decreasing diameter and varies linearly with the fraction of surface atoms. The value of M(S) is higher when the particles are present as a film instead of as a sol. Capping with strongly interacting ligands such as alkane thiols results in a higher M(S) value, which varies with the strength of the metal-sulfur bond. Ferromagnetism is also found in Pt and Ag nanoparticles prepared as sols, and the M(S) values vary as Pt > Au > Ag. A careful study of the temperature variation of the magnetization of Au nanoparticles, along with certain other observations, suggests that small bare nanoparticles of noble metals could indeed possess ferromagnetism, albeit weak, which is accentuated in the presence of capping agents, specially alkane thiols which form strong metal-sulfur bonds.
Resumo:
Insertion of just a few impurity atoms in a host semiconductor nanocrystal can drastically alter its phase, shape, and physical properties. Such doped nanomaterials now constitute an important class of optical materials that can provide efficient, stable, and tunable dopant emission in visible and NIR spectral windows. Selecting proper dopants and inserting them in appropriate hosts can generate many new series of such doped nanocrystals with several unique and attractive properties in order to meet current challenges in the versatile field of luminescent materials. However, the synthesis of such doped nanomaterials with a specific dopant in a predetermined host at a desired site leading to targeted optical properties requires fundamental understanding of both the doping process as well as the resulting photophysical properties. Summarizing up to date literature reports, in this Perspective we discuss important advances in synthesis methods and in-depth understanding of the optical properties, with an emphasis on the most widely investigated Mn-doped semiconductor nanocrystals.
Resumo:
We address a certain inverse problem in ultrasound-modulated optical tomography: the recovery of the amplitude of vibration of scatterers [p(r)] in the ultrasound focal volume in a diffusive object from boundary measurement of the modulation depth (M) of the amplitude autocorrelation of light [phi(r, tau)] traversing through it. Since M is dependent on the stiffness of the material, this is the precursor to elasticity imaging. The propagation of phi(r, tau) is described by a diffusion equation from which we have derived a nonlinear perturbation equation connecting p(r) and refractive index modulation [Delta n(r)] in the region of interest to M measured on the boundary. The nonlinear perturbation equation and its approximate linear counterpart are solved for the recovery of p(r). The numerical results reveal regions of different stiffness, proving that the present method recovers p(r) with reasonable quantitative accuracy and spatial resolution. (C) 2011 Optical Society of America
Resumo:
The Gibbs-Bogoliubov formalism in conjunction with the pseudopotential theory is applied to the calculation of the vapour pressure of eight liquid metals from Groups I to IV of the periodic table and of alloys (Na-K). The calculated vapour pressure of the elements and their temperature dependencies, the partial pressures, activities and boiling points of the alloys are all found to be in reasonable agreement with measured data.