918 resultados para Learning Networks
Resumo:
Questa tesi propone una panoramica sul funzionamento interno delle architetture alla base del deep learning e in particolare del geometric deep learning. Iniziando a discutere dalla storia degli algoritmi di intelligenza artificiale, vengono introdotti i principali costituenti di questi. In seguito vengono approfonditi alcuni elementi della teoria dei grafi, in particolare il concetto di laplaciano discreto e il suo ruolo nello studio del fenomeno di diffusione sui grafi. Infine vengono presentati alcuni algoritmi utilizzati nell'ambito del geometric deep learning su grafi per la classificazione di nodi. I concetti discussi vengono poi applicati nella realizzazione di un'architettura in grado di classficiare i nodi del dataset Zachary Karate Club.
Resumo:
La crescente disponibilità di scanner 3D ha reso più semplice l’acquisizione di modelli 3D dall’ambiente. A causa delle inevitabili imperfezioni ed errori che possono avvenire durante la fase di scansione, i modelli acquisiti possono risultare a volte inutilizzabili ed affetti da rumore. Le tecniche di denoising hanno come obiettivo quello di rimuovere dalla superficie della mesh 3D scannerizzata i disturbi provocati dal rumore, ristabilendo le caratteristiche originali della superficie senza introdurre false informazioni. Per risolvere questo problema, un approccio innovativo è quello di utilizzare il Geometric Deep Learning per addestrare una Rete Neurale in maniera da renderla in grado di eseguire efficacemente il denoising di mesh. L’obiettivo di questa tesi è descrivere il Geometric Deep Learning nell’ambito del problema sotto esame.
Resumo:
Application of dataset fusion techniques to an object detection task, involving the use of deep learning as convolutional neural networks, to manage to create a single RCNN architecture able to inference with good performances on two distinct datasets with different domains.
Resumo:
La seguente tesi propone un’introduzione al geometric deep learning. Nella prima parte vengono presentati i concetti principali di teoria dei grafi ed introdotta una dinamica di diffusione su grafo, in analogia con l’equazione del calore. A seguire, iniziando dal linear classifier verranno introdotte le architetture che hanno portato all’ideazione delle graph convolutional networks. In conclusione, si analizzano esempi di alcuni algoritmi utilizzati nel geometric deep learning e si mostra una loro implementazione sul Cora dataset, un insieme di dati con struttura a grafo.
Resumo:
The amplitude of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) shows a large variability from trial to trial, although MEPs are evoked by the same repeated stimulus. A multitude of factors is believed to influence MEP amplitudes, such as cortical, spinal and motor excitability state. The goal of this work is to explore to which degree the variation in MEP amplitudes can be explained by the cortical state right before the stimulation. Specifically, we analyzed a dataset acquired on eleven healthy subjects comprising, for each subject, 840 single TMS pulses applied to the left M1 during acquisition of electroencephalography (EEG) and electromyography (EMG). An interpretable convolutional neural network, named SincEEGNet, was utilized to discriminate between low- and high-corticospinal excitability trials, defined according to the MEP amplitude, using in input the pre-TMS EEG. This data-driven approach enabled considering multiple brain locations and frequency bands without any a priori selection. Post-hoc interpretation techniques were adopted to enhance interpretation by identifying the more relevant EEG features for the classification. Results show that individualized classifiers successfully discriminated between low and high M1 excitability states in all participants. Outcomes of the interpretation methods suggest the importance of the electrodes situated over the TMS stimulation site, as well as the relevance of the temporal samples of the input EEG closer to the stimulation time. This novel decoding method allows causal investigation of the cortical excitability state, which may be relevant for personalizing and increasing the efficacy of therapeutic brain-state dependent brain stimulation (for example in patients affected by Parkinson’s disease).
Resumo:
La tesi ha lo scopo di ricercare, esaminare ed implementare un sistema di Machine Learning, un Recommendation Systems per precisione, che permetta la racommandazione di documenti di natura giuridica, i quali sono già stati analizzati e categorizzati appropriatamente, in maniera ottimale, il cui scopo sarebbe quello di accompagnare un sistema già implementato di Information Retrieval, istanziato sopra una web application, che permette di ricercare i documenti giuridici appena menzionati.
Resumo:
In the industry of steelmaking, the process of galvanizing is a treatment which is applied to protect the steel from corrosion. The air knife effect (AKE) occurs when nozzles emit a steam of air on the surfaces of a steel strip to remove excess zinc from it. In our work we formalized the problem to control the AKE and we implemented, with the R&D dept.of MarcegagliaSPA, a DL model able to drive the AKE. We call it controller. It takes as input the tuple (pres and dist) to drive the mechanical nozzles towards the (c). According to the requirements we designed the structure of the network. We collected and explored the data set of the historical data of the smart factory. Finally, we designed the loss function as sum of three components: the minimization between the coating addressed by the network and the target value we want to reach; and two weighted minimization components for both pressure and distance. In our solution we construct a second module, named coating net, to predict the coating of zinc
Resumo:
Le interfacce cervello-macchina (BMIs) permettono di guidare devices esterni utilizzando segnali neurali. Le BMIs rappresentano un’importante tecnologia per tentare di ripristinare funzioni perse in patologie che interrompono il canale di comunicazione tra cervello e corpo, come malattie neurodegenerative o lesioni spinali. Di importanza chiave per il corretto funzionamento di una BCI è la decodifica dei segnali neurali per trasformarli in segnali idonei per guidare devices esterni. Negli anni sono stati implementati diversi tipi di algoritmi. Tra questi gli algoritmi di machine learning imparano a riconoscere i pattern neurali di attivazione mappando con grande efficienza l’input, possibilmente l’attività dei neuroni, con l’output, ad esempio i comandi motori per guidare una possibile protesi. Tra gli algoritmi di machine learning ci si è focalizzati sulle deep neural networks (DNN). Un problema delle DNN è l’elevato tempo di training. Questo infatti prevede il calcolo dei parametri ottimali della rete per minimizzare l’errore di predizione. Per ridurre questo problema si possono utilizzare le reti neurali convolutive (CNN), reti caratterizzate da minori parametri di addestramento rispetto ad altri tipi di DNN con maggiori parametri come le reti neurali ricorrenti (RNN). In questo elaborato è esposto uno studio esplorante l’utilizzo innovativo di CNN per la decodifica dell’attività di neuroni registrati da macaco sveglio mentre svolgeva compiti motori. La CNN risultante ha consentito di ottenere risultati comparabili allo stato dell’arte con un minor numero di parametri addestrabili. Questa caratteristica in futuro potrebbe essere chiave per l’utilizzo di questo tipo di reti all’interno di BMIs grazie ai tempi di calcolo ridotti, consentendo in tempo reale la traduzione di un segnale neurale in segnali per muovere neuroprotesi.
Resumo:
The comfort level of the seat has a major effect on the usage of a vehicle; thus, car manufacturers have been working on elevating car seat comfort as much as possible. However, still, the testing and evaluation of comfort are done using exhaustive trial and error testing and evaluation of data. In this thesis, we resort to machine learning and Artificial Neural Networks (ANN) to develop a fully automated approach. Even though this approach has its advantages in minimizing time and using a large set of data, it takes away the degree of freedom of the engineer on making decisions. The focus of this study is on filling the gap in a two-step comfort level evaluation which used pressure mapping with body regions to evaluate the average pressure supported by specific body parts and the Self-Assessment Exam (SAE) questions on evaluation of the person’s interest. This study has created a machine learning algorithm that works on giving a degree of freedom to the engineer in making a decision when mapping pressure values with body regions using ANN. The mapping is done with 92% accuracy and with the help of a Graphical User Interface (GUI) that facilitates the process during the testing time of comfort level evaluation of the car seat, which decreases the duration of the test analysis from days to hours.
Resumo:
The usage of Optical Character Recognition’s (OCR, systems is a widely spread technology into the world of Computer Vision and Machine Learning. It is a topic that interest many field, for example the automotive, where becomes a specialized task known as License Plate Recognition, useful for many application from the automation of toll road to intelligent payments. However, OCR systems need to be very accurate and generalizable in order to be able to extract the text of license plates under high variable conditions, from the type of camera used for acquisition to light changes. Such variables compromise the quality of digitalized real scenes causing the presence of noise and degradation of various type, which can be minimized with the application of modern approaches for image iper resolution and noise reduction. Oneclass of them is known as Generative Neural Networks, which are very strong ally for the solution of this popular problem.
Resumo:
Ecological science contributes to solving a broad range of environmental problems. However, lack of ecological literacy in practice often limits application of this knowledge. In this paper, we highlight a critical but often overlooked demand on ecological literacy: to enable professionals of various careers to apply scientific knowledge when faced with environmental problems. Current university courses on ecology often fail to persuade students that ecological science provides important tools for environmental problem solving. We propose problem-based learning to improve the understanding of ecological science and its usefulness for real-world environmental issues that professionals in careers as diverse as engineering, public health, architecture, social sciences, or management will address. Courses should set clear learning objectives for cognitive skills they expect students to acquire. Thus, professionals in different fields will be enabled to improve environmental decision-making processes and to participate effectively in multidisciplinary work groups charged with tackling environmental issues.
Resumo:
Human land use tends to decrease the diversity of native plant species and facilitate the invasion and establishment of exotic ones. Such changes in land use and plant community composition usually have negative impacts on the assemblages of native herbivorous insects. Highly specialized herbivores are expected to be especially sensitive to land use intensification and the presence of exotic plant species because they are neither capable of consuming alternative plant species of the native flora nor exotic plant species. Therefore, higher levels of land use intensity might reduce the proportion of highly specialized herbivores, which ultimately would lead to changes in the specialization of interactions in plant-herbivore networks. This study investigates the community-wide effects of land use intensity on the degree of specialization of 72 plant-herbivore networks, including effects mediated by the increase in the proportion of exotic plant species. Contrary to our expectation, the net effect of land use intensity on network specialization was positive. However, this positive effect of land use intensity was partially canceled by an opposite effect of the proportion of exotic plant species on network specialization. When we analyzed networks composed exclusively of endophagous herbivores separately from those composed exclusively of exophagous herbivores, we found that only endophages showed a consistent change in network specialization at higher land use levels. Altogether, these results indicate that land use intensity is an important ecological driver of network specialization, by way of reducing the local host range of herbivore guilds with highly specialized feeding habits. However, because the effect of land use intensity is offset by an opposite effect owing to the proportion of exotic host species, the net effect of land use in a given herbivore assemblage will likely depend on the extent of the replacement of native host species with exotic ones.
Resumo:
PURPOSE: To determine the mean critical fusion frequency and the short-term fluctuation, to analyze the influence of age, gender, and the learning effect in healthy subjects undergoing flicker perimetry. METHODS: Study 1 - 95 healthy subjects underwent flicker perimetry once in one eye. Mean critical fusion frequency values were compared between genders, and the influence of age was evaluated using linear regression analysis. Study 2 - 20 healthy subjects underwent flicker perimetry 5 times in one eye. The first 3 sessions were separated by an interval of 1 to 30 days, whereas the last 3 sessions were performed within the same day. The first 3 sessions were used to investigate the presence of a learning effect, whereas the last 3 tests were used to calculate short-term fluctuation. RESULTS: Study 1 - Linear regression analysis demonstrated that mean global, foveal, central, and critical fusion frequency per quadrant significantly decreased with age (p<0.05).There were no statistically significant differences in mean critical fusion frequency values between males and females (p>0.05), with the exception of the central area and inferonasal quadrant (p=0.049 and p=0.011, respectively), where the values were lower in females. Study 2 - Mean global (p=0.014), central (p=0.008), and peripheral (p=0.03) critical fusion frequency were significantly lower in the first session compared to the second and third sessions. The mean global short-term fluctuation was 5.06±1.13 Hz, the mean interindividual and intraindividual variabilities were 11.2±2.8% and 6.4±1.5%, respectively. CONCLUSION: This study suggests that, in healthy subjects, critical fusion frequency decreases with age, that flicker perimetry is associated with a learning effect, and that a moderately high short-term fluctuation is expected.
Resumo:
PURPOSE: To evaluate the sensitivity and specificity of machine learning classifiers (MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard automated perimetry (SAP). METHODS: Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Machine Gaussian (SVMG). Areas under the receiver operating characteristic curves (aROC) obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. RESULTS: Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE) to 0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly larger the best single OCT parameter (p<0.05), but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19). CONCLUSION: Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física